【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到 △A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線(xiàn)段CA的延長(zhǎng)線(xiàn)上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點(diǎn)E為線(xiàn)段AB中點(diǎn),點(diǎn)P是線(xiàn)段AC上的動(dòng)點(diǎn),在△ABC 繞點(diǎn) B 按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線(xiàn)段EP1長(zhǎng)度的最大值與最小值.
【答案】(1)90°;(2);(3),7.
【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,根據(jù)等邊對(duì)等角得到∠CC1B=∠C1CB=45°,根據(jù)∠CC1A1=∠CC1B+∠A1C1B得解;
(2)通過(guò)證明△ABA1∽△CBC1,利用相似三角形的面積比等于相似比的平方得到,,據(jù)此解得△CBC1的面積;
(3)過(guò)點(diǎn)B作BD⊥AC,D為垂足,求得BD=,①當(dāng)P在AC上運(yùn)動(dòng)至垂足點(diǎn)D,使點(diǎn)P的對(duì)應(yīng)點(diǎn)P1在線(xiàn)段AB上時(shí),EP1=BP1﹣BE;②當(dāng)P在AC上運(yùn)動(dòng)至點(diǎn)C,使點(diǎn)P的對(duì)應(yīng)點(diǎn)P1在線(xiàn)段AB的延長(zhǎng)線(xiàn)上時(shí),EP1最大,EP1=BC+BE.
試題解析:解:(1)∵由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,
∴∠CC1B=∠C1CB=45°,
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°;
(2)∵由旋轉(zhuǎn)的性質(zhì)可得:△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,
∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,
∴∠ABA1=∠CBC1,
∴△ABA1∽△CBC1,
∴,
∵S△ABA1=4,∴S△CBC1=.
(3)過(guò)點(diǎn)B作BD⊥AC,D為垂足,
∵△ABC為銳角三角形,∴點(diǎn)D在線(xiàn)段AC上,
在Rt△BCD中,BD=BC×sin45°=,
①如圖1,當(dāng)P在AC上運(yùn)動(dòng)至垂足點(diǎn)D,△ABC繞點(diǎn)B旋轉(zhuǎn),使點(diǎn)P的對(duì)應(yīng)點(diǎn)P1在線(xiàn)段AB上時(shí),EP1最。钚≈禐椋EP1=BP1﹣BE=BD﹣BE=﹣2.
②如圖2,當(dāng)P在AC上運(yùn)動(dòng)至點(diǎn)C,△ABC繞點(diǎn)B旋轉(zhuǎn),使點(diǎn)P的對(duì)應(yīng)點(diǎn)P1在線(xiàn)段AB的延長(zhǎng)線(xiàn)上時(shí),EP1最大,最大值為:EP1=BC+BE=5+2=7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cos∠EFG的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)正方形ABCD的頂點(diǎn)D作DE∥AC交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)判斷四邊形ACED的形狀,并說(shuō)明理由;
(2)若BD=8cm,求線(xiàn)段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處, 折痕為AF,若CD=6,則AF等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷(xiāo)售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,其銷(xiāo)售量y(萬(wàn)個(gè))與銷(xiāo)售價(jià)格x(元/個(gè)) 的變化如下表:同時(shí),銷(xiāo)售過(guò)程中的其他開(kāi)支(不含進(jìn)價(jià))總計(jì)40萬(wàn)元.
銷(xiāo)售價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷(xiāo)售量y(萬(wàn)個(gè)) | … | 5 | 4 | 3 | 2 | … |
(1)觀(guān)察并分析表中的數(shù)據(jù),用所學(xué)過(guò)的函數(shù)知識(shí),直接寫(xiě)出y與 x的函數(shù)解析式;
(2)求出該公司銷(xiāo)售這種計(jì)算器的凈得利潤(rùn)z(萬(wàn)元)與銷(xiāo)售價(jià)格 x(元/個(gè)) 的函數(shù)解析式,銷(xiāo)售價(jià)格定為多少元時(shí)凈得利潤(rùn)最大,最大值是多少?
(3)該公司要求凈得利潤(rùn)不能低于40萬(wàn)元,請(qǐng)你結(jié)合函數(shù)圖象求出銷(xiāo)售價(jià)格 x(元/個(gè)) 的取值范圍,若還需考慮銷(xiāo)售量盡可能大,銷(xiāo)售價(jià)格應(yīng)定為多少元 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸是學(xué)習(xí)初中數(shù)學(xué)的- -個(gè)重要工具利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)為,則兩點(diǎn)之間的距離,若,則可簡(jiǎn)化為;線(xiàn)段的中點(diǎn)表示的數(shù)為如圖,已知數(shù)軸上有兩點(diǎn),分別表示的數(shù)為,點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)以每秒個(gè)單位長(zhǎng)度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)運(yùn)動(dòng)開(kāi)始前,兩點(diǎn)的距離為多少個(gè)單位長(zhǎng)度;線(xiàn)段的中點(diǎn)所表示的數(shù)為?
(2)點(diǎn)運(yùn)動(dòng)秒后所在位置的點(diǎn)表示的數(shù)為 ;點(diǎn) 運(yùn)動(dòng)秒后所在位置的點(diǎn)表示的數(shù)為 . (用含的式子表示
(3)它們按上述方式運(yùn)動(dòng),兩點(diǎn)經(jīng)過(guò)多少秒會(huì)相距個(gè)單位長(zhǎng)度?
(4)若按上述方式運(yùn)動(dòng), 兩點(diǎn)經(jīng)過(guò)多少秒,線(xiàn)段的中點(diǎn)與原點(diǎn)重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)等腰直角三角形如圖放置,∠B=∠CAD=90°,AB=BC=cm,AC=AD,垂直于CD的直線(xiàn)a從點(diǎn)C出發(fā),以每秒cm的速度沿CD方向勻速平移,與CD交于點(diǎn)E,與折線(xiàn)BAD交于點(diǎn)F;與此同時(shí),點(diǎn)G從點(diǎn)D出發(fā),以每秒1cm的速度沿著DA的方向運(yùn)動(dòng);當(dāng)點(diǎn)G落在直線(xiàn)a上,點(diǎn)G與直線(xiàn)a同時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)填空:CD=_______cm;
(2)連接EG、FG,設(shè)△EFG的面積為y,求y與t之間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)t的取值范圍;
(3)是否存在某一時(shí)刻t(0<t<2),作∠ADC的平分線(xiàn)DM交EF于點(diǎn)M,是否存在點(diǎn)M是EF的中點(diǎn)?若存在,求此時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線(xiàn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線(xiàn)于F,連接CF,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為6的正方形,點(diǎn)E在邊AB上,BE=4,過(guò)點(diǎn)E作EF∥BC,分別交BD、CD于G、F兩點(diǎn).若M、N分別是DG、CE的中點(diǎn),則MN的長(zhǎng)為 ( )
A. 3 B. C. D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com