【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(4,6).反比例函數(shù)y=(x>0)的圖象經(jīng)過BC的中點(diǎn)D,與AB交于點(diǎn)E,連接DE.
(1)求k的值;
(2)求直線DE的解析式.
【答案】(1)12;(2)y=﹣x+9
【解析】
(1)先利用D點(diǎn)為BC的中點(diǎn)得到D(2,6),再把點(diǎn)坐標(biāo)代入y=可得到k的值;
(2)由于B點(diǎn)的橫坐標(biāo)為4,則利用反比例函數(shù)解析式可確定E(4,3),然后利用待定系數(shù)法求直線DE的解析式.
解:(1)∵四邊形OABC為矩形,
∴BC∥x軸,AB∥y軸,
∵點(diǎn)B的坐標(biāo)為(4,6).D點(diǎn)為BC的中點(diǎn),
∴D(2,6),
把D(2,6)代入y=得k=2×6=12;
(2)反比例函數(shù)解析式為y=,
當(dāng)x=4時(shí),y==3,則E(4,3),
設(shè)直線DE的解析式為y=mx+n,
把D(2,6),E(4,3)分別代入得,
解得:,
∴直線DE的解析式為y=﹣x+9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,扇形OAB的半徑為4,∠AOB=90°,P是半徑OB上一動點(diǎn),Q是上一動點(diǎn).
(1)連接AQ、BQ、PQ,則∠AQB的度數(shù)為 ;
(2)當(dāng)P是OB中點(diǎn),且PQ∥OA時(shí),求的長;
(3)如圖2,將扇形OAB沿PQ對折,使折疊后的恰好與半徑OA相切于點(diǎn)C.若OP=3,求點(diǎn)O到折痕PQ的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo);
(4)在平面內(nèi),是否存在點(diǎn)M使點(diǎn)A、B、C、M構(gòu)成平行四邊形,如果存在,直接寫出M坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,BC切⊙O于點(diǎn)B,AD⊥BC,垂足為D,OA是⊙O的半徑,且OA=3.
(1)求證:AB平分∠OAD;
(2)若點(diǎn)E是優(yōu)弧 上一點(diǎn),且∠AEB=60°,求扇形OAB的面積.(計(jì)算結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)為A(2,),拋線物與y軸交于點(diǎn)B(0,),點(diǎn)C在其對稱軸上且位于點(diǎn)A下方,將線段AC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)A落在拋物線上的點(diǎn)P處.
(1)求拋物線的解析式;
(2)求線段AC的長;
(3)將拋物線平移,使其頂點(diǎn)A移到原點(diǎn)O的位置,這時(shí)點(diǎn)P落在點(diǎn)D的位置,如果點(diǎn)M在y軸上,且以O,C,D,M為頂點(diǎn)的四邊形的面積為8,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,頂點(diǎn)為點(diǎn),拋物線與軸交于、點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)若拋物線經(jīng)過點(diǎn)時(shí),求此時(shí)拋物線的解析式;
(2)直線與拋物線交于、兩點(diǎn),若,請求出的取值范圍;
(3)如圖,若直線交軸于點(diǎn),請求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)E是正方形ABCD邊CD上任意點(diǎn),以DE為邊作正方形DEFG,連接BF.點(diǎn)M是線段BF中點(diǎn),射線EM與BC交于點(diǎn)H,連接CM.
(1)請直接寫出CM和EM的數(shù)量關(guān)系和位置關(guān)系:__________;
(2)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)E、G恰好分別落在線段AD、CD上,如圖2所示,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.
(3)若DG=,AB=4.
①把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°,此時(shí)點(diǎn)F恰好落在線段CD上,連接EM,如圖3所示,其他條件不變,計(jì)算EM的長度;
②若把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一周,請直接寫出EM的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店用3600元按批發(fā)價(jià)購買了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購買該花卉20盆.市場調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣出25盆.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣出1盆.
(1)該花卉每盆批發(fā)價(jià)是多少元?
(2)若每天所得的銷售利潤為200元時(shí),且銷量盡可能大,該花卉每盆售價(jià)是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過5元,問該花卉一天最大的銷售利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com