【題目】如圖,ABBC、CD分別與⊙O相切于E、F、G三點(diǎn),且ABCD,OB6cmOC8cm

(Ⅰ)求證:OBOC;

(Ⅱ)求CG的長.

【答案】(Ⅰ)證明見解析 (Ⅱ)6.4cm

【解析】

(Ⅰ)根據(jù)切線的性質(zhì)得到OB平分∠EBFOC平分∠GCF,OFBC,再根據(jù)平行線的性質(zhì)得∠GCF+EBF=180°,則有∠OBC+OCB=90°,即∠BOC=90°;
(Ⅱ)由勾股定理可求得BC的長,進(jìn)而由切線長定理即可得到CG的長.

解:(Ⅰ)連接OF;根據(jù)切線長定理得:BEBF,CFCG,∠OBF=∠OBE,∠OCF=∠OCG

ABCD,

∴∠ABC+BCD180°,

∴∠OBE+OCF90°,

∴∠BOC90°

OBOC;

(Ⅱ)由(Ⅰ)知,∠BOC90°

OB6cm,OC8cm,

∴由勾股定理得到:BC10cm,

OF4.8cm

6.4cm,

CF、CG分別與⊙O相切于FG,

CGCF6.4cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF都是直角三角形,∠ACB=∠DFE90°,ABDE,頂點(diǎn)FBC上,邊DF經(jīng)過點(diǎn)C,點(diǎn)A,EBC同側(cè),DEAB

1)求證:△ABC≌△DEF;

2)若AC11,EF6,CF4,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB8BC10,AC12DAC邊上一點(diǎn),且AB2ADAC,連接BD,點(diǎn)E、F分別是BCAC上兩點(diǎn)(點(diǎn)E不與B、C重合),∠AEF=∠C,AEBD相交于點(diǎn)G

1)求BD的長;

2)求證BGE∽△CEF;

3)連接FG,當(dāng)GEF是等腰三角形時(shí),直接寫出BE的所有可能的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.

求出每天的銷售利潤與銷售單價(jià)之間的函數(shù)關(guān)系式;

求出銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?

如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,EAB上一點(diǎn),以AE為直徑作OBC相切于點(diǎn)D,連接ED并延長交AC的延長線于點(diǎn)F

1)求證:AEAF;

2)若AE5,AC4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD都是垂直于地面BC的建筑物.在建筑物AB的頂點(diǎn)A處測(cè)得建筑物CD的底端C的俯角為24°,測(cè)得頂端D的仰角為36°,若AC=200米,AD=300米,求建筑物CD的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2+k﹣1x﹣k與直線y=kx+1交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).

1)如圖1,當(dāng)k=1時(shí),直接寫出AB兩點(diǎn)的坐標(biāo);

2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);

3)如圖2,拋物線y=x2+k﹣1x﹣kk0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),在直線y=kx+1上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請(qǐng)求出此時(shí)k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是一棵古樹,某校初四(1)班數(shù)學(xué)興趣小組的同學(xué)想利用所學(xué)知識(shí)測(cè)出這棵古樹的高,過程如下:在古樹同側(cè)的水平地面上,分別選取了C、D兩點(diǎn)(CD兩點(diǎn)與古樹在同一直線上),用測(cè)角儀在C處測(cè)得古樹頂端A的仰角α60°,在D處測(cè)得古樹頂端A的仰角β30°,又測(cè)得CD兩點(diǎn)相距14米.已知測(cè)角儀高為1.5米,請(qǐng)你根據(jù)他們所測(cè)得的數(shù)據(jù)求出古樹AB的高.(精確到0.1米,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某路燈燈架示意圖,其中點(diǎn)A表示電燈,ABBC為燈架,l表示地面,已知AB2m,BC5.7m,∠ABC110°,BCl于點(diǎn)C,求電燈A與地面l的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

同步練習(xí)冊(cè)答案