【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.
(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請判斷拋物線①與拋物線②是否互相依存,并說明理由.
(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m>0)個單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.
(3)試問:如果對稱軸不同的兩條拋物線(二次函數(shù)圖象)互相依存,那么它們的函數(shù)表達(dá)式中的二次項系數(shù)之間有什么數(shù)量關(guān)系?請說明理由.
【答案】(1)拋物線①與拋物線②相互依存(2) (3)0
【解析】
(1)根據(jù)兩拋物線的關(guān)聯(lián)依次判斷即可;
(2)根據(jù)兩拋物線關(guān)聯(lián)的定義直接列式得出結(jié)論;
(3)設(shè)互相依存的一條拋物線為y1=a1(x﹣m1)2+n1
另一條拋物線為y2=a2(x﹣m2)2+n2,分別代入頂點,兩式相加.
(1)由拋物線①知,y=﹣2x2+4x+3=﹣2(x﹣1)2+5,頂點坐標(biāo)為(1,5),
把x=1代入拋物線②:y=2x2+4x﹣1,得y=5,
∴拋物線①的頂點在拋物線②上,
又由拋物線②知,y=2(x+1)2﹣3,頂點坐標(biāo)為(﹣1,﹣3),
把x=﹣1代入拋物線①中,得,y=﹣3,
∴拋物線②的頂點在拋物線①上,
∴拋物線①與拋物線②相互依存.
(2)由拋物線①:y=﹣2(x﹣1)2+5,沿x軸翻折后為y=2(x﹣1)2﹣5,
設(shè)平移后的拋物線解析式為y=2(x﹣1﹣m)2﹣5,
把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,
∴m=±;
∵m>0,
∴m=,
∴當(dāng)m= 時,得到拋物線C2:y=2(x﹣1﹣)2﹣5,頂點為(1+,﹣5),
把x=1+代入拋物線C1,得y=﹣5,
∴m=;
(3)它們的二次項系數(shù)互為相反數(shù),理由如下:
設(shè)互相依存的一條拋物線為y1=a1(x﹣m1)2+n1,頂點為(m1,n1)
另一條拋物線為y2=a2(x﹣m2)2+n2,頂點為(m2,n2),其中m1≠m2,
∴把(m2,n2)代入y1,得n2=a1(m2﹣m1)2+n1,①
把(m1,n1)代入y2,得n1=a2(m1﹣m2)2+n2②
由①+②得,a1(m2﹣m1)2+a2(m1﹣m2)2=0
∵m1≠m2,
∴a1+a2=0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CB與AD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.
(1)求證:∠ABC=∠AED;
(2)連接BF,若AD=,AF=6,tan∠AED=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商貿(mào)公司有、兩種型號的商品需運出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(立方米/件) | 質(zhì)量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號,體積一共是20立方米,質(zhì)量一共是10.5噸,求、兩種型號商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6立方米,其收費方式有以下兩種:
①按車收費:每輛車運輸貨物到目的地收費600元;
②按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.
現(xiàn)要將(1)中商品一次或分批運輸?shù)侥康牡,如果兩種收費方式可混合使用,商貿(mào)公司應(yīng)如何選擇運送、付費方式,使其所花運費最少,最少運費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍(lán)球、2個紅球.
(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);
(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對“美團”和“滴滴”兩家網(wǎng)約車公司各10名司機月收入進行了一項抽樣調(diào)查,司機月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收入/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元2 | |
“美團” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空;
(2)若從兩家公司中選擇一家做網(wǎng)約車司機,你會選哪家公司,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點為圓心,以這點到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語言敘述)
寫出證明過程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過的下列四邊形中哪些是圓外切四邊形 (填序號)
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是 .
③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在BC、CD上移動,但A到EF的距離AH始終保持與AB長相等,問在E、F移動過程中:
(1)∠EAF的大小是否有變化?請說明理由.
(2)△ECF的周長是否有變化?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com