如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于另一點(diǎn)Q,如果QP=QO,則∠OCP=         
20或40或100

試題分析:解:①根據(jù)題意,畫出圖(1),
在△QOC中,OC=OQ,∴∠OQC=∠OCP,
在△OPQ中,QP=QO,∴∠QOP=∠QPO,
又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,∴∠OCP=40°.
②當(dāng)P在線段OA的延長線上(如圖2)
∵OC=OQ,∴∠OQP=(180°-∠QOC)×①,
∵OQ=PQ,∴∠OPQ=(180°-∠OQP)×②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得:60°+∠QOC=∠OQP,
∵∠OQP=∠QCO,∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°,
∴∠QOC=20°,則∠OQP=80°∴∠OCP=100°;
③當(dāng)P在線段OA的反向延長線上(如圖3),
∵OC=OQ,∴∠OCP=∠OQC=(180°-∠COQ)×①,
∵OQ=PQ,∴∠P=(180°-∠OQP)×②,
∵∠AOC=30°,∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④聯(lián)立得∠P=10°,
∴∠OCP=180°-150°-10°=20°.
故答案為:40°、20°、100°.
點(diǎn)評(píng):本題難度較高。主要考查了圓的認(rèn)識(shí)及等腰三角形等邊對(duì)等角的性質(zhì),先假設(shè)存在并進(jìn)行分類討論是進(jìn)行解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)圓錐的側(cè)面積是底面積的2倍,則圓錐側(cè)面展開圖的扇形圓心角是(   )
A.1200B.1800C.2400D.3000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=6cm ,BC=6cm,經(jīng)過A,B的直線l以1cm/秒的速度向下作勻速平移運(yùn)動(dòng),交BC于點(diǎn)B′,交CD于點(diǎn) D′,與此同時(shí),點(diǎn)P從點(diǎn)B′ 出發(fā),在直線l上以1cm/秒的速度沿直線l向右下方向作勻速運(yùn)動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.

(1)你求出的AB的長是     ;
(2)過點(diǎn)C作CD⊥AB于點(diǎn)D,t為何值時(shí),點(diǎn)P移動(dòng)到CD上?
(3)t為何值時(shí),以點(diǎn)P為圓心、1cm為半徑的圓與直線CD相切?
(4)以點(diǎn)P為圓心、1 cm為半徑的⊙P與CD所在的直線相交時(shí),是否存在點(diǎn)P與兩個(gè)交點(diǎn)構(gòu)成的三角形是等邊三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC與△ADE都是等腰直角三角形,∠ACB和∠E都是直角,點(diǎn)CAD邊上,BC=,把△ABC繞點(diǎn)A 按順時(shí)針方向旋轉(zhuǎn)n 度后恰好與△ADE重合,則n的值是         ,點(diǎn)C經(jīng)過的路線的長是         ,線段BC在上述旋轉(zhuǎn)過程中所掃過部分的面積是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將一個(gè)底面半徑為2,高為4的圓錐形紙筒沿一條母線剪開,所得到的側(cè)面展開圖形面積為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系中,原點(diǎn)O是正三角形ABC外接圓的圓心,點(diǎn)A軸的正半軸上,△ABC的邊長為6.以原點(diǎn)O為旋轉(zhuǎn)中心將△ABC沿逆時(shí)針方向旋轉(zhuǎn)角,得到△,點(diǎn)、分別為點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn).

(1)當(dāng)=60時(shí),
①請(qǐng)?jiān)趫D1中畫出△;
②若AB分別與、交于點(diǎn)DE,則DE的長為_______;
(2)如圖2,當(dāng)AB時(shí),分別與AB、BC交于點(diǎn)FG,則點(diǎn)的坐標(biāo)為         _____,△FBG的周長為_____,△ABC與△重疊部分的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別為2和3,若圓心距為5,則這兩圓的位置關(guān)系是
A.相交 B.外離C.外切D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=5,則△PCD的周長為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩圓的半徑分別為2和3,圓心距為4,則兩圓的位置關(guān)系為       ;

查看答案和解析>>

同步練習(xí)冊(cè)答案