【題目】某商場用36000元購進甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進價120元,售價138元;乙種商品每件進價100元,售價120元.
(1)該商場購進甲、乙兩種商品各多少件?
(2)商場第二次以原進價購進甲、乙兩種商品,購進乙種商品的件數(shù)不變,而購進甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于8160元,乙種商品最低售價為每件多少元?
【答案】甲200件,乙120件;108元.
【解析】試題分析:(1)題中有兩個等量關(guān)系:購買A種商品進價+購買B種商品進價=36000,出售甲種商品利潤+出售乙種商品利潤=6000,由此可以列出二元一次方程組解決問題.
(2)根據(jù)不等關(guān)系:出售甲種商品利潤+出售乙種商品利潤≥8160,可以列出一元一次不等式解決問題.
試題解析:(1)設(shè)商場購進甲種商品x件,乙種商品y件,根據(jù)題意得:
,
解得: .
答:該商場購進甲種商品200件,乙種商品120件.
(2)設(shè)乙種商品每件售價z元,根據(jù)題意,得
120(z-100)+2×200×≥8160,
解得:z≥108.
答:乙種商品最低售價為每件108元.
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明:已知,如圖,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD
求證:∠EGF=90°
證明:∵HG∥AB(已知)
∴∠1=∠3(__________________________)
又∵HG∥CD(已知)
∴∠2=∠4(_______________________________)
∵AB∥CD(已知)
∴∠BEF+___________=180°(_____________________)
又∵EG平分∠BEF,F(xiàn)G平分∠EFD (已知)
∴∠1=(______)∠BEF,∠2=(______)∠EFD (______________________)
∴∠1+∠2=(________) (∠BEF +∠EFD)=(____________)
∴∠3+∠4=90°(_______________________)即∠EGF=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為5的⊙O中,弦AB=8,P是弦AB所對的優(yōu)弧上的動點,連接AP,過點A作AP的垂線交射線PB于點C,當△PAB是等腰三角形時,線段BC的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是( 。
A. a >b>c
B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限
C. m(am+b)+b<a(m是任意實數(shù))
D. 3b+2c>0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為極大地滿足人民生活的需求,豐富市場供應,某區(qū)農(nóng)村溫棚設(shè)施農(nóng)業(yè)迅速發(fā)展,溫棚種植面積在不斷擴大.在耕地上培成一行一行的長方形土埂,按順序間隔種植不同農(nóng)作物的方法叫分壟間隔套種.科學研究表明:在塑料溫棚中分壟間隔套種高、矮不同的蔬菜和水果(同一種緊挨在一起種植不超過兩壟),可增加它們的光合作用,提高單位面積的產(chǎn)量和經(jīng)濟效益.
現(xiàn)有一個種植總面積為540 m2的長方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:
占地面積(m2/壟) | 產(chǎn)量(千克/壟) | 利潤(元/千克) | |
西紅柿 | 30 | 160 | 1.1 |
草莓 | 15 | 50 | 1.6 |
(1)若設(shè)草莓共種植了壟,通過計算說明共有幾種種植方案,分別是哪幾種;
(2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)官方數(shù)據(jù)統(tǒng)計,70周年國慶閱兵網(wǎng)上總觀看人次突破513000000,最高同時在線人數(shù)突破600萬.將513000000用科學記數(shù)法表示應為( 。
A.5.13×108B.5.13×109C.513×106D.0.513×109
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程
如圖,已知DE∥BC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分別平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王購買了一套經(jīng)濟適用房,他準備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)寫出用含x、y的代數(shù)式表示廚房的面積是________m2;臥室的面積是________m2;
(2)寫出用含x、y的代數(shù)式表示這套房的總面積是多少平方米?
(3)當x=3,y=2時,求小王這套房的總面積是多少平方米?
(4)若在(3)中,小王到某商店挑選了80cm×80cm的地磚來鑲客廳和臥室,他應買多少塊才夠用?(結(jié)果保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com