【題目】在探究平行線的判定——基本事實:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行時,老師布置了這樣的任務:

請同學們分組在學案上(如圖),用直尺和三角尺畫出過點P與直線AB平行的直線PQ;并思考直尺和三角尺在畫圖過程中所起的作用.

小菲和小明所在的小組是這樣做的:他們選取直尺和含有45°角的三角尺,用平移三角尺的畫圖方法畫出AB的平行線PQ,并將實際畫圖過程抽象出平面幾何圖形(如圖).

以下是小菲和小明所在小組關于直尺和三角尺作用的討論:

①在畫平行線的過程中,三角尺由初始位置靠著直尺平移到終止位置,實際上就是先畫∠BMD=45°,再過點P畫∠BMD=45°

②由初始位置的三角尺和終止位置的三角尺各邊所在直線構成一個“三線八角圖”,其中QP為截線

③初始位置的三角尺和終止位置的三角尺在“三線八角圖”中構成一組同位角

④在畫圖過程中,直尺可以由直線CD代替

⑤在“三線八角圖”中,因為ABCD是截線,所以,可以下結論“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”

其中,正確的是(

A.①②⑤B.①③④C.②④⑤D.③④⑤

【答案】B

【解析】

這種畫法就是畫同位角∠DMB和∠DEP相等,從而判斷PQAB,從而根據(jù)平行線的判定定理對各小題進行判斷.

在畫平行線的過程中,三角尺由初始位置靠著直尺平移到終止位置,實際上就是先畫∠BMD=45°,再過點P畫∠BMD=45°,所以①正確;

由初始位置的三角尺和終止位置的三角尺各邊所在直線構成一個三線八角圖,其中CD為截線,所以②錯誤;

初始位置的三角尺和終止位置的三角尺在三線八角圖中構成一組同位角,所以③正確;

在畫圖過程中,直尺可以由直線CD代替,所以④正確;

⑤在三線八角圖中,因為ABPQ是一組平行線,CD為截線,所以,可以下結論兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行,所以⑤錯誤.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】平行線問題的探索:

1)問題一:已知:如圖,于點于點,當時,求的度數(shù)

甲、乙.丙三位同學用不同的方法添加輔助線解決問題,如圖1

甲同學輔助線的做法和分析思路如下:輔助線:過點,分析思路:

a.欲求的度數(shù),由圖可知只需轉化為求的度數(shù);

b.可知,又由已知的度數(shù)可得的度數(shù);

c.由推出由此可推出;

d.由已知可得所以可得的度數(shù);

f.從而可求的度數(shù)

①請你根據(jù)乙同學所畫的圖形,描述乙同學輔助線的做法.輔助線: _

請你根據(jù)丙同學所畫的圖形,且不再添加其他輔助線,求的度數(shù).

2)問題二: 如圖2,在平面直角坐標系中,點軸負半軸上一點,點軸正半軸上一點,其中滿足關系式:

,

根據(jù)已知點的坐標判斷的位置關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1過點A(04),點D(4,0),直線l2x軸交于點C,兩直線,相交于點B

(1)求直線的解析式和點B的坐標;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OAOB相交于M、N兩點,則以下結論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.

(1)求證:AE=EC;

(2)當ABC=60°,CEF=60°時,點F在線段BC上的什么位置?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列命題:

a>b,則c﹣a<c﹣b;

a>0,則=a;

對角線互相平分且相等的四邊形是菱形;

如果兩條弧相等,那么它們所對的圓心角相等.

其中原命題與逆命題均為真命題的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課外小組活動中,老師提出了如下問題:

如果一個不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個不等式叫做絕對值不等式,求絕對值不等式|x|aa>0)和|x|aa>0)的解集.

小明同學的探究過程如下:

先從特殊情況入手,求|x|2|x|2的解集.確定|x|2的解集過程如下:

先根據(jù)絕對值的幾何定義,在數(shù)軸上找到到原點的距離大于2的所有點所表示的數(shù),在數(shù)軸上確定范圍如下:

所以,|x|2的解集是x2

再來確定|x|2的解集:同樣根據(jù)絕對值的幾何定義,在數(shù)軸上找到到原點的距離小于2的所有點所表示的數(shù),在數(shù)軸上確定范圍如下:

所以,|x|2的解集為:

經過大量特殊實例的實驗,小明得到絕對值不等式|x|aa>0)的解集為 ,|x|aa>0)的解集為

請你根據(jù)小明的探究過程及得出的結論,解決下列問題:

1)請將小明的探究過程補充完整;

2)求絕對值不等式2|x+1|-35的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,現(xiàn)有一個大正方形和四個一樣的小正方形,小明、小聰、小方分別用這些正方形設計出了圖1,圖2,圖3三種圖案:

1)根據(jù)圖1,圖2中所標數(shù)據(jù),求出大正方形和小正方形的邊長分別是多少厘米?

2)若圖3中四個小正方形的重疊部分也是三個一樣的小正方形,求大正方形中未被小正方形覆蓋的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,在同一平面內,將繞點旋轉到的位置,使得,則

A.B.C.D.

查看答案和解析>>

同步練習冊答案