【題目】小明在海灣森林公園放風(fēng)箏.如圖所示,小明在A處,風(fēng)箏飛到C處,此時線長BC為40米,若小明雙手牽住繩子的底端B距離地面1.5米,從B處測得C處的仰角為60°,求此時風(fēng)箏離地面的高度CE.(計算結(jié)果精確到0.1米, ≈1.732)
【答案】解:過點B作BD⊥CE于點D,
∵AB⊥AE,DE⊥AE,BD⊥CE,
∴四邊形ABDE是矩形,
∴DE=AB=1.5米.
∵BC=40米,∠CBD=60°,
∴CD=BCsin60°=40× =20 ,
∴CE=CD+DE=20 +1.5≈20×1.73+1.5≈36.1(米).
答:此時風(fēng)箏離地面的高度CE是36.1米.
【解析】過點B作BD⊥CE于點D,由銳角三角函數(shù)的定義求出CD的長,根據(jù)CE=CD+DE即可得出結(jié)論.
【考點精析】認(rèn)真審題,首先需要了解關(guān)于仰角俯角問題(仰角:視線在水平線上方的角;俯角:視線在水平線下方的角).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三角形ABC的邊AB是⊙0的切線,切點為B.AC經(jīng)過圓心0并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸、y軸分別交于A(﹣1,0)、B(3,0)、C(0,3)三點.
(1)試求拋物線的解析式;
(2)P是直線BC上方拋物線上的一個動點,設(shè)P的橫坐標(biāo)為t,P到BC的距離為h,求h與t的函數(shù)關(guān)系式,并求出h的最大值.
(3)設(shè)點M是x軸上的動點,在平面直角坐標(biāo)系中,是否存在點N,使得以點A、C、M、N為頂點的四邊形是菱形?若存在,求出所有符合條件的點N坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場,某車行經(jīng)營的A型車去年3月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年3月份與去年3月份賣出的A型車數(shù)量相同,則今年3月份A型車銷售總額將比去年3月份銷售總額增加25%.
(1)求今年3月份A型車每輛銷售價多少元?
(2)該車行計劃今年4月份新進一批A型車和B型車共50輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,A、B兩種型號車的進貨和銷售價格如下表,問應(yīng)如何進貨才能使這批車獲利最多?
A型車 | B型車 | |
進貨價格(元/輛) | 1100 | 1400 |
銷售價格(元/輛) | 今年的銷售價格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進行選拔,這三項的成績滿分均為100分,并按2︰3︰5的比例計算總分,最后,按照成績的排序從高到低依次錄取.該區(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進入說課環(huán)節(jié),這6名選手的各項成績見表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
筆試成績 | 66 | 90 | 86 | 64 | 66 | 84 |
專業(yè)技能測試成績 | 95 | 92 | 93 | 80 | 88 | 92 |
說課成績 | 85 | 78 | 86 | 88 | 94 | 85 |
(1)筆試成績的平均數(shù)是 ;
(2)寫出說課成績的中位數(shù)為 ,眾數(shù)為 ;
(3)已知序號為1,2,3,4號選手的總分成績分別為84.2分,84.6分,88.1分,80.8分,請你通過計算判斷哪兩位選手將被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上所對應(yīng)的數(shù)為﹣2.
(1)點B在點A右邊距A點4個單位長度,求點B所對應(yīng)的數(shù);
(2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當(dāng)點A運動到﹣6所在的點處時,求A,B兩點間距離.
(3)在(2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經(jīng)過多長時間A,B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=6,cos∠B= ,以點B為圓心,AB為半徑作圓B,以點C為圓心,半徑長為13作圓C,圓B與圓C的位置關(guān)系是( )
A.外切
B.相交
C.內(nèi)切
D.內(nèi)含
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是一個嚴(yán)重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標(biāo)準(zhǔn):每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應(yīng)交水費y元.
(1)若0<x≤6,請寫出y與x的函數(shù)關(guān)系式.
(2)若x>6,請寫出y與x的函數(shù)關(guān)系式.
(3)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com