經(jīng)過點A(-2,-1),且與直線y=2x-3平行的直線解析式為
y=2x+3
y=2x+3
分析:設(shè)所求直線解析式為y=kx+b,根據(jù)兩條直線平行問題得到k=2,然后把A點坐標代入y=2x+b可求出b的值,從而可確定所求直線解析式.
解答:解:設(shè)所求直線解析式為y=kx+b,
∵直線y=kx+b與直線y=2x-3平行,
∴k=2,
把A(-2,-1)代入y=2x+b得-4+b=-1,解得b=3,
∴所求直線解析式為y=2x+3.
點評:本題考查了兩條直線相交或平行問題:若直線y=k1x+b1與直線y=k2x+b2平行,則k1=k2;若直線y=k1x+b1與直線y=k2x+b2相交,則由兩解析式所組成的方程組的解為交點坐標.也考查了待定系數(shù)法求函數(shù)解析式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

若反比例函數(shù)y=
k
x
(k<0)的圖象經(jīng)過點(-2,a),(-1,b),(3,c),則a,b,c的大小關(guān)系為( 。
A、c>a>b
B、b>a>c
C、a>b>c
D、c>b>a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線頂點D (0,
1
8
),且經(jīng)過點A(1,
17
8
).
(1)求這條拋物線的解析式;
(2)點F是坐標原點O關(guān)于該拋物線頂點的對稱點,坐標為(0,
1
4
).我們可以用以下方法求線段FA的長度;過點A作AA1⊥x軸,過點F作x軸的平行線,交AA1于A2,則FA2=1,A2A=
17
8
-
1
4
=
15
8
,在Rt△AFA2中,有FA=
12+(
15
8
)2
=
17
8
.已知拋物線上另一點B的橫坐標為2,求線段FB的長;
(3)若點P是該拋物線在第一象限上的任意一點,試探究線段FP的長度與點P縱坐標的大小關(guān)系,并證明你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=-x+2與x軸、y軸分別交于點A和點B,另已知直線y=kx+b(k≠0)經(jīng)過精英家教網(wǎng)點C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1:5,求k和b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與函數(shù)y=
1
2
x+1
的圖象相交于點A(
8
3
,a)

(1)求a的值;
(2)求不等式組0<kx+b<
1
2
x+1
的正整數(shù)解;
(3)若函數(shù)y=kx+b圖象與x軸的交點是B,函數(shù)y=
1
2
x+1
的圖象與y軸的交點是C,求四邊形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=kx+b經(jīng)過點A(0,1),B(-3,0),點P是這條直線上的一個動點,以P精英家教網(wǎng)為圓心的圓與x軸相切于點C.
(1)求直線AB的解析式;
(2)設(shè)點P的橫坐標為t,若⊙P與y軸相切,求t的值;
(3)是否存在點P,使⊙P與y軸兩交點間的距離恰好等于2?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案