【題目】如圖,拋物線軸交于點(diǎn),對(duì)稱軸為直線,平行于軸的直線與拋物線交于兩點(diǎn),點(diǎn)在對(duì)稱軸左側(cè),.

I.求此拋物線的解析式;

Ⅱ.已知在軸上存在一點(diǎn),使得的周長(zhǎng)最小,求點(diǎn)的坐標(biāo);

Ⅲ.若過(guò)點(diǎn)的直線的面積分成2:3兩部分,試求直線的解析式.

【答案】Ⅰ.;Ⅱ.點(diǎn)的坐標(biāo)為;Ⅲ.直線解析式為.

【解析】

I.由對(duì)稱軸直線x=2,以及A點(diǎn)坐標(biāo)確定出bc的值,即可求出拋物線解析式;

.由拋物線的對(duì)稱軸及BC的長(zhǎng),確定出BC的橫坐標(biāo),代入拋物線解析式求出縱坐標(biāo),確定出BC坐標(biāo),再求出點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),連接x軸于點(diǎn)D,則點(diǎn)D即為所求,利用待定系數(shù)法求出的解析式,即可解決問(wèn)題.

.利用待定系數(shù)法求出直線AB解析式,過(guò)QQHy軸,與y軸交于點(diǎn)H,BCy軸交于點(diǎn)M,由已知面積之比求出QH的長(zhǎng),確定出Q橫坐標(biāo),代入直線AB解析式求出縱坐標(biāo),確定出Q坐標(biāo),再利用待定系數(shù)法求出直線l的解析式.

解:I.由題意得:,,

解得.

∴此拋物線的解析式為.

.∵拋物線對(duì)稱軸為直線

橫坐標(biāo)為,橫坐標(biāo)為1.

代入拋物線解析式得:,

,.

如圖,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),

設(shè)直線解析式為

坐標(biāo)代入得:,即.

,解得,即點(diǎn)的坐標(biāo)為.

.如圖,設(shè)直線解析式為

b

坐標(biāo)代入得,即.

設(shè)直線交于點(diǎn),過(guò)軸,垂足為,設(shè)軸交于點(diǎn)

可得.

.

∵直線面積分成23兩部分,

.

.

.

當(dāng)時(shí),把代入直線解析式得,

此時(shí),直線解析式為.

當(dāng)時(shí),把代入直線解析式得,

此時(shí),直線解析式為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙OBC于點(diǎn)D,交AC于點(diǎn)E,過(guò)點(diǎn)DFGAC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)G

1)求證:GD為⊙O切線;

2)求證:DE2=EF·AC

3)若tanC=2,AB=5,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一枚六個(gè)面編號(hào)分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲兩次,記第一次擲出的點(diǎn)數(shù)為,第二次擲出的點(diǎn)數(shù)為,則使關(guān)于的方程組 只有正數(shù)解的概率為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=9,SABC=,動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)出發(fā),以相同的速度在線段AC上由CA運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEFP、Q、EF按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH

1)求tanA的值;

2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請(qǐng)?zhí)骄?/span>S是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說(shuō)明理由;

3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)、、均在格點(diǎn)上.I. 的長(zhǎng)等于______________;Ⅱ.點(diǎn)在射線上,點(diǎn)在射線上,當(dāng)的周長(zhǎng)最小時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出,并簡(jiǎn)要說(shuō)明點(diǎn),的位置是如何找到的(不要求證明)____________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明放學(xué)后從學(xué)校回家,出發(fā)分鐘時(shí),同桌小強(qiáng)發(fā)現(xiàn)小明的數(shù)學(xué)作業(yè)卷忘記拿了,立即拿著數(shù)學(xué)作業(yè)卷按照同樣的路線去追趕小明,小強(qiáng)出發(fā)分鐘時(shí),小明才想起沒(méi)拿數(shù)學(xué)作業(yè)卷,馬上以原速原路返回,在途中與小強(qiáng)相遇.兩人離學(xué)校的路程(米)與小強(qiáng)所用時(shí)間(分鐘)之間的函數(shù)圖象如圖所示.

1)求函數(shù)圖象中的值;

2)求小強(qiáng)的速度;

3)求線段的函數(shù)解析式,并寫(xiě)出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解七年級(jí)學(xué)生的體重情況,隨機(jī)抽取了七年級(jí)m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

組別

體重(千克)

人數(shù)

A

37.5≤x42.5

10

B

42.5≤x47.5

n

C

47.5≤x52.5

40

D

52.5≤x57.5

20

E

57.5≤x62.5

10

請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:

1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計(jì)圖中,C組所在扇形的圓心角的度數(shù)等于_______度;

2)若把每組中各個(gè)體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?

3)如果該校七年級(jí)有1000名學(xué)生,請(qǐng)估算七年級(jí)體重低于47.5千克的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,AE垂直于AB邊上的中線CD,交BC于點(diǎn)E.

1)求證:

2)若,求邊ACBC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在端午節(jié)期間開(kāi)展優(yōu)惠活動(dòng),凡購(gòu)物者可以通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲,指針指向A區(qū)域時(shí),所購(gòu)買物品享受9折優(yōu)惠、指針指向其它區(qū)域無(wú)優(yōu)惠;方式二:同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲和轉(zhuǎn)盤(pán)乙,若兩個(gè)轉(zhuǎn)盤(pán)的指針指向每個(gè)區(qū)域的字母相同,所購(gòu)買物品享受8折優(yōu)惠,其它情況無(wú)優(yōu)惠.在每個(gè)轉(zhuǎn)盤(pán)中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán))

1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為   ;

2)若顧客選擇方式二,請(qǐng)用樹(shù)狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案