【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=-x2-bx+c的圖象經(jīng)過點A,點B10)和點C0,3).點D是拋物線的頂點.

1)求二次函數(shù)的解析式和點D的坐標(biāo)

2)直線y=kx+nk≠0)與拋物線交于點MN,當(dāng)CMN的面積被y軸平分時,求kn應(yīng)滿足的條件

3)拋物線的對稱軸與x軸交于點E,將拋物線向下平移mm0)個單位,平移后拋物線與y軸交于點C,連接DC,OD,是否存在OD平分∠CDE的情況?若存在,求出m的值;若不薦在,請說明理由.

【答案】1y=-x2-2x+3,點D-14);(2k=-2n3;(3)存在,m=

【解析】

1)利用待定系數(shù)法求得解析式,利用二次函數(shù)的頂點坐標(biāo)公式即可求得點D的坐標(biāo);

2)聯(lián)立直線與拋物線的解析式得出關(guān)于x的一元二次方程,根據(jù)要使y軸平分CMN的面積,則M、N兩點的橫坐標(biāo)互為相反數(shù),根據(jù)根與系數(shù)的關(guān)系即可得出k值;再根據(jù)而點H在點C之下這一條件,可得出n的取值范圍;

3)解答本類題目的總體思路在于先假設(shè)存在,若能求出m的值則假設(shè)成立,否則不成立;若存在,首先根據(jù)角平分線的性質(zhì),得出OH= 1,DH= 4;進(jìn)而設(shè)HG=a,由DOG的面積建立關(guān)于a的方程組,解之可得點G的坐標(biāo),進(jìn)而求出直線DG的表達(dá)式和OC,與OC作差,即可求出m的值,說明存在OD平分∠CDE的情況.

1y=-x2-bx+c=-x2-bx+3,將點B坐標(biāo)代入上式得:0=-1-b+3,

解得:b=2,

故拋物線的表達(dá)式為:y=-x2-2x+3

則點A-3,0)、點D-1,4);

2)設(shè)點M、N的橫坐標(biāo)為x1、x2,

當(dāng)CMN的面積被y軸平分時,則x1+x2=0,

將二次函數(shù)表達(dá)式與直線表達(dá)式聯(lián)立并整理得:

x2+2+kx+n-3=0,

x1+x2=-2+k=0,即k=-2,

而點H在點C之下,故n3,

故:k=-2,n3

3)存在,理由:

OD平分∠CDE,即:∠EDO=ODC,

延長DCx軸于點G,過點OOHDG交于H

∵∠EDO=ODC,

OH=OE=1,DH=DE=4,

設(shè)HG=a,則OG=,

SDOG=OG×DE=OH×GD

即:4=1×4+a),

解得:a=,即點G,0),

∴直線DG的表達(dá)式為:y=-x+,

OC′=,

m=3-=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;

2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圓O中,弦ABCD相交于點E,且弧AC與弧BD相等.點D在劣弧AB上,聯(lián)結(jié)CO并延長交線段AB于點F,聯(lián)結(jié)OAOB.當(dāng)OA,且tanOAB

1)求弦CD的長;

2)如果AOF是直角三角形,求線段EF的長;

3)如果SCEF4SBOF,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:把一次函數(shù)ykxb的一次項系數(shù)和常數(shù)項互換得y=bxk,我們稱ykxbybxk(其中k·b≠0,且|k|≠|(zhì)b|))為互助一次函數(shù),例如:y=-2x3y3x2就是互助一次函數(shù).如圖1所示,一次函數(shù)ykxb和它的互助一次函數(shù)的圖象1,2交于點P1,2x軸、y軸分別交于點A,B和點CD

(1)如圖1所示,當(dāng)k=-1b5時,直接寫出點P的坐標(biāo)是_________

(2)如圖2所示,已知點M(1,1.5)N(2,0).試探究隨著k,b值的變化,MPNP的值是否發(fā)生變化,若不變,求出MPNP的值;若變化,求出使MPNP取最小值時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A-2m)繞坐標(biāo)原點O順時針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點P的坐標(biāo)為(3,2),則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店以每件50元的價格購進(jìn)兩種服裝,已知銷售30種服裝和40種服裝共獲利潤1000元,銷售40種服裝和50種服裝共獲利潤1300元.

1)求兩種服裝每件的售價;

2)若該服裝店準(zhǔn)備購進(jìn)兩種服裝共80件,并規(guī)定種服裝不少于種服裝的,設(shè)購進(jìn)種服裝件,求利潤(元)與(件)之間的函數(shù)解析式,并求出當(dāng)取何值時,利潤最大,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形DEFG的邊EFABC的邊BC上,頂點D,G分別在邊ABAC上,AHBC,垂足為H,AHDG于點P,已知BC6AH4.當(dāng)矩形DEFG面積最大時,HP的長是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結(jié)合圖中所給信息解答下列問題:

1)本次共調(diào)查  名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是  ;

2)補全條形統(tǒng)計圖;

3)學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名學(xué)生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,過點作直線,

1)若,點是線段的中點,點在射線上,當(dāng)是邊長為5的等腰三角形,共有幾個這樣的點,并嘗試求出點的坐標(biāo);

2)若直線不平行,在直線上,是否存在點,使得是直角三角形,且,若存在,求出這樣的點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案