【題目】如圖,點(diǎn)O為矩形ABCD的對稱中心,AB=5cm,BC=6cm,點(diǎn)E.F.G分別從A.B.C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為1.5cm/s,當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點(diǎn)E.F.G運(yùn)動(dòng)的時(shí)間為t(單位:s).
(1)當(dāng)t等于多少s時(shí),四邊形EBFB′為正方形;
(2)若以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似,求t的值;
(3)是否存在實(shí)數(shù)t,使得點(diǎn)B’與點(diǎn)O重合?若存在,求出t的值;若不存在,請說明理由.
【答案】(1)t=1.25;(2)當(dāng)t=1.4s或t=(﹣7+)s時(shí),以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似;(3)不存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合.理由見解析.
【解析】
(1)利用正方形的性質(zhì),得到BE=BF,列一元一次方程求解即可;
(2)△EBF與△FCG相似,分兩種情況,需要分類討論,逐一分析計(jì)算;
(3)本問為存在型問題.假設(shè)存在,則可以分別求出在不同條件下的t值,它們互相矛盾,所以不存在
(1)若四邊形EBFB′為正方形,則BE=BF,BE=5﹣t,BF=3t,
即:5﹣t=3t,
解得t=1.25;
故答案為:1.25;
(2)分兩種情況,討論如下:
①若△EBF∽△FCG,
則有,即,
解得:t=1.4;
②若△EBF∽△GCF,
則有,即,
解得:t=﹣7﹣(不合題意,舍去)或t=﹣7+.
∴當(dāng)t=1.4s或t=(﹣7+)s時(shí),以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似.
(3)假設(shè)存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合.
如圖,過點(diǎn)O作OM⊥BC于點(diǎn)M,則在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=3﹣3t,OM=2.5,
由勾股定理得:OM2+FM2=OF2,
即:2.52+(3﹣3t)2=(3t)2
解得:t=;
過點(diǎn)O作ON⊥AB于點(diǎn)N,則在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,
由勾股定理得:ON2+EN2=OE2,
即:32+(2.5﹣t)2=(5﹣t)2
解得:t=.
∵≠,
∴不存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組就“最想去的金華最美村落”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的最美鄉(xiāng)村下面是根據(jù)調(diào)查結(jié)果繪制出的不完整的統(tǒng)計(jì)圖
請根據(jù)圖中提供的信息,解答下列問題:
被調(diào)查的學(xué)生總?cè)藬?shù)為______人;
扇形統(tǒng)計(jì)圖中“最想去鄉(xiāng)村D”的扇形圓心角的度數(shù)為______;
若該校共有800名學(xué)生,請估計(jì)“最想去鄉(xiāng)村B”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017
首先設(shè)S=1+2+22+23+24+…+22017 ① 則2S=2+22+23+24+25+…+22018 ②
②﹣①得S=22018﹣1 即1+2+22+23+24+…+22017=22018﹣1
以上解法,在數(shù)列求和中,我們稱之為:“錯(cuò)位相減法”
請你根據(jù)上面的材料,解決下列問題
(1)求1+3+32+33+34+…+32019的值
(2)若a為正整數(shù)且,求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)是的重心,過作的平行線,分別交于點(diǎn),交于點(diǎn),作,交于點(diǎn),若四邊形的面積為4,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB長為10,弦AC長為6,∠ACB的平分線交⊙O于點(diǎn)D,則BC的長為_____,CD的長_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E在線段BC上,△ADE是等邊三角形,且∠BAC=120°
(1)求證:△ABD∽△CAE;
(2)若BD=2,CE=8,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計(jì)圖如圖1,AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30 cm.
(1)如圖2,當(dāng)∠BAC=24°時(shí),CD⊥AB,求支撐臂CD的長;
(2)如圖3,當(dāng)∠BAC=12°時(shí),求AD的長.(結(jié)果保留根號)
(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在口ABCD中,分別以邊BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,連接AF,AE.
(1)求證:△ABF≌△EDA;
(2)延長AB與CF相交于G,若AF⊥AE,求證BF⊥BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com