【題目】如圖,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于點D,DE⊥AC于點E,BF∥DE交CD于點F.
求證:DE=BF.
【答案】證明:∵CD平分∠ACB, ∴∠1=∠2,
∵DE⊥AC,∠ABC=90°
∴DE=BD,∠3=∠4,
∵BF∥DE,
∴∠4=∠5,
∴∠3=∠5,
∴BD=BF,
∴DE=BF.
【解析】根據(jù)角平分線的定義得到∠1=∠2,根據(jù)角平分線的性質(zhì)得到DE=BD,∠3=∠4,由平行線的性質(zhì)得到3=∠5,于是得到結論.
【考點精析】利用平行線的性質(zhì)和角平分線的性質(zhì)定理對題目進行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解九年級學生(共450人)的身體素質(zhì)情況,體育老師對九(1)班的50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制了如下部分頻數(shù)分布表和部分頻數(shù)分布直方圖.
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
A | 80≤x<100 | 6 |
B | 100≤x<120 | 8 |
C | 120≤x<140 | m |
D | 140≤x<160 | 18 |
E | 160≤x<180 | 6 |
請結合圖表解答下列問題:
(1)表中的m=;
(2)請把頻數(shù)分布直方圖補完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第組;
(4)若九年級學生一分鐘跳繩次數(shù)(x)合格要求是x≥120,則估計九年級學生中一分鐘跳繩成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=40°,延長AC到D,使CD=BC,點P是△ABD的內(nèi)心,則∠BPC=( )
A.105°
B.110°
C.130°
D.145°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應推進中小學生素質(zhì)教育的號召,某校決定在下午15點至16點開設以下選修課:音樂史、管樂、籃球、健美操、油畫.為了解同學們的選課情況,某班數(shù)學興趣小組從全校三個年級中各調(diào)查一個班級,根據(jù)相關數(shù)據(jù),繪制如下統(tǒng)計圖.
(1)請根據(jù)以上信息,直接補全條形統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2);
(2)若初一年級有180人,請估算初一年級中有多少學生選修音樂史?
(3)若該校共有學生540人,請估算全校有多少學生選修籃球課?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型文體活動需招募一批學生作為志愿者參與服務,已知報名的男生有420人,女生有400人,他們身高均在150≤x<175之間,為了解這些學生身高的具體分別情況,從中隨機抽取若干學生進行抽樣調(diào)查,抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
組別 | 身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)圖表提供的信息,有下列幾種說法
①估計報名者中男生身高的眾數(shù)在D組;
②估計報名者中女生身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④估計身高在160cm至170cm(不含170cm)的學生約有400人
其中合理的說法是( )
A.①②
B.①④
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在AB邊上,點F在BC邊的延長線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時針方向至少旋轉多少度才能與△CFD重合,旋轉中心是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,過點A(0,4)的圓的圓心坐標為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線y= x2+bx+c經(jīng)過C、B兩點,與x軸的另一交點為D.
(1)點B的坐標為( , ),拋物線的表達式為;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com