【題目】我市規(guī)劃中某地段地鐵線(xiàn)路要穿越護(hù)城河PQ,站點(diǎn)A和站點(diǎn)B在河的兩側(cè),要測(cè)算出A、B間的距離.工程人員在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q出,測(cè)得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)

【答案】解:∵∠PQB=90°﹣41°=49°,

∠BPQ=90°﹣24.5°=65.5°,

∴∠PBQ=180°﹣49°﹣65.5°=65.5°,

∴∠BPQ=∠PBQ,

∴BQ=PQ;

∵∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,

∴AQ= = =1600,

∵BQ=PQ=1200,

∴AB2=AQ2+BQ2=16002+12002,

∴AB=2000,

答:A、B的距離為2000m


【解析】首先由已知求出∠PBQ和∠BPQ的度數(shù)得出線(xiàn)段BQ與PQ,根據(jù)已知求出∠PQA,再由直角三角形PQA求出AQ,又由已知得∠AQB=90°,所以根據(jù)勾股定理求出A,B間的距離.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用關(guān)于方向角問(wèn)題,掌握指北或指南方向線(xiàn)與目標(biāo)方向 線(xiàn)所成的小于90°的水平角,叫做方向角即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四邊形ABCD中,∠A=x,∠C=y,(x180°y180°).

1)∠ABC+ADC=_____(用含x、y的代數(shù)式表示);

2)如圖1,若x=y=90°,DE平分∠ADCBF平分與∠ABC相鄰的外角,請(qǐng)寫(xiě)出DEBF的位置關(guān)系,并說(shuō)明理由.

3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線(xiàn)所在直線(xiàn)構(gòu)成的銳角,

①當(dāng)xy時(shí),若x+y=140°,∠DFB=30°試求x、y

②小明在作圖時(shí),發(fā)現(xiàn)∠DFB不一定存在,請(qǐng)直接指出x、y滿(mǎn)足什么條件時(shí),∠DFB不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分8分)

如圖,點(diǎn)E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點(diǎn)O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中點(diǎn),⊙O與AC、BC分別相切于點(diǎn)D、E,點(diǎn)F是⊙O與AB的一個(gè)交點(diǎn),連接DF并延長(zhǎng)交CB的延長(zhǎng)線(xiàn)于點(diǎn)G,則BG的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、F、C、D在同一直線(xiàn)上,AB∥DE,AC=DF,AB=DE.
(1)求證:四邊形BCEF是平行四邊形;
(2)若∠ABC=90°,AB=8,BC=6,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AE⊥BD,垂足為E,∠DAE:∠BAE=1:2,則∠CAE的度數(shù)( )

A. 30° B. 45° C. 60° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(100),(04),點(diǎn)DOA的中點(diǎn),點(diǎn)PBC上運(yùn)動(dòng),當(dāng)ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線(xiàn)為x軸,OC所在的直線(xiàn)為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.

(1)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線(xiàn)交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線(xiàn)的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案