如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,二次函數(shù)的圖象經(jīng)過點A,B,與x軸分別交于點E,F(xiàn),且點E的坐標為(,0),以OC為直徑作半圓,圓心為D.

(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對稱軸交點為P,M是線段CB上的一個動點(點M與點B,C不重合),過點M作MN∥BE交x軸與點N,連結(jié)PM,PN,設CM的長為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請說明理由.
解:(1)∵四邊形OABC是邊長為2的正方形,∴A(0,2),B(2,2)。
又∵E的坐標為(,0),
,解得,。
∴該二次函數(shù)的解析式為:。
(2)如圖,過點D作DG⊥BE于點G,

由題意,得,

∵∠BEC=∠DEG,∠EGD=∠ECB=90°,
∴△EGD∽△ECB。
,即。∴DG=1。
∵⊙D的半徑是1,且DG⊥BE,∴BE是⊙D的切線。
(3)由題意,得E(,0),B(2,2).

設直線BE為y=kx+h,則
,解得,。
∴直線BE為:。
∵直線BE與拋物線的對稱軸交點為P,對稱軸直線為x=1,
∴點P的縱坐標,即P(1,)。
∵MN∥BE,∴∠MNC=∠BEC。
∵∠C=∠C=90°,∴△MNC∽△BEC!,即!
。
,
。
(0<t<2)。
∵拋物線(0<t<2)的開口方向向下,
∴S存在最大值,當t=1時,S最大=。
(1)根據(jù)題意易得點A、B的坐標,然后把點A、B、E的坐標分別代入二次函數(shù)解析式,列出關(guān)于a、b、c的方程組,利用三元一次方程組來求得系數(shù)的值。
(2)如圖,過點D作DG⊥BE于點G,構(gòu)建相似三角形△EGD∽△ECB,根據(jù)它的對應邊成比例得到,由此求得DG=1(圓的半徑是1),則易證得結(jié)論。
(3)利用待定系數(shù)法求得直線BE為:,則易求P(1,).然后由相似三角形△MNC∽△BEC的對應邊成比例,線段間的和差關(guān)系得到.所以由即可求得(0<t<2),由拋物線的性質(zhì)可以求得S的最值。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,點A的坐標為(,0),連結(jié)OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.

(1)請直接寫出點B的坐標;
(2)求經(jīng)過A、O、B三點的拋物線的解析式;
(3)如果點P是(2)中的拋物線上的動點,且在x軸的上方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖.在平面直角坐標系中,邊長為的正方形ABCD的頂點A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點E.

(1)求證:△OAD≌△EAB;
(2)求過點O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點P,其關(guān)于直線BF的對稱點在x軸上?若有,求出點P的坐標;
(4)連接OE,若點M是直線BF上的一動點,且△BMD與△OED相似,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.

(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內(nèi)拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為(0,4)且與x軸交于(﹣2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在同一坐標系內(nèi),一次函數(shù)與二次函數(shù)的圖象可能是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù),當自變量x取m對應的函數(shù)值大于0,設自變量分別取m-3,m+3 時對應的函數(shù)值為y1,y2,則
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)的圖象如圖所示,有下列5個結(jié)論:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數(shù))。
其中正確結(jié)論的序號有     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線的最小值是     

查看答案和解析>>

同步練習冊答案