【題目】如圖1,在△ABC中,ABAC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點(diǎn)E,

1)若∠ACE18°,則∠ECD   

2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.

3)如圖2,作△ABC的高AF并延長(zhǎng),交BD于點(diǎn)G,交CD延長(zhǎng)線于點(diǎn)H,求證:CH2+DH22AD2

【答案】145°;(2)∠ACE=∠ACD45°,理由見解析;(2)見解析

【解析】

1)由等腰三角形的性質(zhì)得出∠ABC=∠ACE18°,得出∠BAC180°18°18°144°,由等腰直角三角形的性質(zhì)得出∠BAD90°ABAD,求出∠DAC54°,證出ACAD,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠ACD180°54°)=63°,即可得出答案;

2)由(1)得出∠BAC180°2ACE,得出∠DAC90°2ACE,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論;

3)連接BH,由(2)得出∠ECD45°,由等腰三角形的性質(zhì)得出BFCF,由線段垂直平分線的性質(zhì)得出BHCH,由等腰三角形的性質(zhì)得出∠HBC=∠BCD45°,證出∠BHC90°,由勾股定理得出BH2+DH2BD2.進(jìn)而得出結(jié)論.

1)∵ABAC,

∴∠ABC=∠ACE18°,

∴∠BAC180°18°18°144°,

∵以AB為直角邊作等腰直角三角形ABD,

∴∠BAD90°,ABAD,

∴∠DAC144°90°54°,

ABAC,

ACAD,

∴∠ACD180°54°)=63°

∴∠DCE=∠ACD﹣∠ACE63°18°45°;

故答案為:45°

2)∠ACE=∠ACD45°;理由如下:

由(1)得:∠BAC180°2ACE,

∴∠DAC=∠BAC90°90°2ACE,

ACAD,

∴∠ACD180°﹣∠DAC)=[180°﹣(90°2ACE]45°+ACE,

∴∠ACE=∠ACD45°;

3)連接BH,如圖2所示:

由(2)得:∠ECD45°

ABAC,AFBC,

BFCF,

BHCH,

∴∠HBC=∠BCD45°

∴∠BHC90°,

BH2+DH2BD2

∵△ABD是等腰直角三角形,

BD22AD2

CH2+DH22AD2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)k取不同的值時(shí),y關(guān)于x的函數(shù)y=kx+2(k≠0)的圖象為總是經(jīng)過點(diǎn)(0,2)的直線,我們把所有這樣的直線合起來,稱為經(jīng)過點(diǎn)(0,2)的“直線束”.那么,下面經(jīng)過點(diǎn)(﹣1,2)的直線束的函數(shù)式是( 。

A. y=kx﹣2(k≠0) B. y=kx+k+2(k≠0)

C. y=kx﹣k+2(k≠0) D. y=kx+k﹣2(k≠0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn),MAB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=DOB;DMCE;CM+DM的最小值是10,上述結(jié)論中正確的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC的兩邊OA、OC分別落在x軸、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)是(6,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形對(duì)角線的交點(diǎn)E,且與BC邊交于點(diǎn)D.

(1)求反比例函數(shù)的解析式與點(diǎn)D的坐標(biāo);直接寫出ODE的面積;

(2)若P是OA上的動(dòng)點(diǎn),求使得PD+PE之和最小時(shí)的直線PE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a、bc為常數(shù)且a≠0)中的xy的部分對(duì)應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當(dāng)時(shí),y0;

3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(diǎn),且與軸相交于負(fù)半軸

問:給出四個(gè)結(jié)論:;②;③;④.寫出其中正確結(jié)論的序號(hào)(答對(duì)得分,少選、錯(cuò)選均不得分)

問:給出四個(gè)結(jié)論:①abc0;2a+b0;a+c=1a1.寫出其中正確結(jié)論的序號(hào).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線、相交于點(diǎn),半徑為的圓心在直線上,且與點(diǎn)的距離為.如果的速度,沿由的方向移動(dòng),那么________秒種后與直線相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象與直線相交于第一象限、的兩點(diǎn).如圖所示,過兩點(diǎn)分別作軸的垂線,線段、相交與,給出以下結(jié)論:①;②四邊形是正方形;③若.則的面積是點(diǎn)一定在直線上,其中正確命題的個(gè)數(shù)是幾個(gè)(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廣告公司設(shè)計(jì)一幅周長(zhǎng)為16米的矩形廣告牌,廣告設(shè)計(jì)費(fèi)為每平方米2000元.設(shè)矩形一邊長(zhǎng)為x,面積為S平方米.

(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)設(shè)計(jì)費(fèi)能達(dá)到24000元嗎?為什么?

(3)當(dāng)x是多少米時(shí),設(shè)計(jì)費(fèi)最多?最多是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案