【題目】如圖,過原點O的直線AB與反比例函數(k>0)的圖象交于A、B兩點,點B坐標為(﹣2,m),過點A作AC⊥y軸于點C,OA的垂直平分線DE交OC于點D,交AB于點E.若△ACD的周長為5,則k的值為.
【答案】6
【解析】解:∵過原點O的直線AB與反比例函數y=(k>0)的圖象交于A、B兩點,
∴A、B兩點關于原點對稱,
∵點B坐標為(﹣2,m),
∴點A坐標為(2,﹣m),
∵AC⊥y軸于點C,
∴AC=2,
∵DE垂直平分AO,
∴AD=OD,
∵△ACD的周長為5,
∴AD+CD=5﹣AC=3,
∴OC=AD+CD=3,
∴A(2,3),
∵點A在反比例函數y=(k>0)的圖象上,
∴k=2×3=6,
所以答案是:6.
【考點精析】本題主要考查了線段垂直平分線的性質的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學某學期的四次數學測試成績(單位:分)如下表:
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 87 | 95 | 85 | 93 |
乙 | 80 | 80 | 90 | 90 |
據上表計算,甲、乙兩名同學四次數學測試成績的方差分別為S甲2=17、S乙2=25,下列說法正確的是( 。
A.甲同學四次數學測試成績的平均數是89分
B.甲同學四次數學測試成績的中位數是90分
C.乙同學四次數學測試成績的眾數是80分
D.乙同學四次數學測試成績較穩(wěn)定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,線段AB的兩個端點是A(﹣5,1),B(﹣2,3),線段CD的兩個端點是C(﹣5,﹣1),D(﹣2,﹣3).
(1)線段AB與線段CD關于直線對稱,則對稱軸是;
(2)平移線段AB得到線段A1B1 , 若點A的對應點A1的坐標為(1,2),畫出平移后的線段A1B1 , 并寫出點B1的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點F是BC延長線上一點,以CF為邊,作菱形CDEF,使菱形CDEF與點A在BC的同側,連接BE,點G是BE的中點,連接AG、DG.
(1)如圖①,當∠BAC=∠DCF=90°時,直接寫出AG與DG的位置和數量關系;
(2)如圖②,當∠BAC=∠DCF=60°時,試探究AG與DG的位置和數量關系,
(3)當∠BAC=∠DCF=α時,直接寫出AG與DG的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富學生的體育生活,學校準備購進一些籃球和足球,已知用900元購買籃球的個數比購買足球的個數少1個,足球的單價為籃球單價的0.9倍.
(1)求籃球、足球的單價分別為多少元?
(2)如果計劃用5000元購買籃球、足球共52個,那么至少要購買多少個足球?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產品,根據物價部門規(guī)定:該產品每千克售價不得超過90元,在銷售過程中發(fā)現的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學數學興趣小組為了解本校學生對電視節(jié)目的喜愛情況,隨機調查了部分學生最喜愛哪一類節(jié)目 (被調查的學生只選一類并且沒有不選擇的),并將調查結果制成了如下的兩個統計圖(不完整).請你根據圖中所提供的信息,完成下列問題:
(1)求本次調查的學生人數;
(2)請將兩個統計圖補充完整,并求出新聞節(jié)目在扇形統計圖中所占圓心角的度數;
(3)若該中學有2000名學生,請估計該校喜愛電視劇節(jié)目的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com