已知一個邊長為a的正方形內(nèi)部可以放置五個半徑為1的圓(圓可以與正方形的邊相切),使得任意兩個圓至多只有一個公共點,求a的最小值.
分析:根據(jù)半徑為a的正方形內(nèi)部放置了五個半徑為1的圓,可以求得正方形的對角線的長,據(jù)此可以求得a的最小值.
解答:解:如圖所示,當正方形內(nèi)的五個圓按圖中的方式放置時,
精英家教網(wǎng)
正方形的邊長a=2+2
2
,它表明當正方形的邊長為 2+2
2
時,
放置正方形內(nèi)部的五個半徑為1的圓可以滿足任意兩個圓至多只有一個公共點.(6分)
另一方面,在邊長為a 的正方形ABCD中不重疊地放置五個半徑為1 的圓O1、O2、O3、O4、O5
則O1、O2、O3、O4、O5一定都落在與ABCD各邊距離都為1的且在ABCD內(nèi)部的正方形EFHG的邊界或內(nèi)部,(10分)
將正方形EFHG分割成四個全等的正方形區(qū)域1、2、3、4,
則O1、O2、O3、O4、O5中必有兩點落在同一區(qū)域中,(16分)
由于每兩點間的距離不小于2,
則小正方形區(qū)域?qū)蔷長
2
×
a-2
2
≥2
,
即a≥2
2
+2
,
所以,a的最小值是2+2
2
.(20分)
點評:本題考查了相切兩圓的性質(zhì),解決本題的關鍵是正確地作出圖形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

為了探究夾角為60°的V形架中放置正多邊形鋼板的穩(wěn)定性問題(正多邊形的重心就是它的中心,重心越低越穩(wěn)定),請按以下放置的方式進行計算和猜想:
(1)將一個邊長為 20cm的正三角形鋼板(用△ABC表示)按圖1,圖2,圖3,的三種方式進行放置.已知在圖3中,重心距地面的距離為
20
3
3
,請通過計算或證明說明,三種放法中,哪一種放法最穩(wěn)定?
精英家教網(wǎng)
(2)若將(l)中的正三角形鋼板換成邊長為 20cm的正方形鋼板(如圖4,圖5,圖6).已知在圖6中,重心距地面的距離約為23.7cm,請通過計算或證明說明,三種放法中,哪一種放法最穩(wěn)定?(可能用到的數(shù)據(jù):
2
≈1.4;
3
≈1.7;
6
≈2.4)
精英家教網(wǎng)
(3)通過上述計算,若將一個邊長為 20cm的正六邊形鋼板放置于架中(如圖7,圖8,圖9),你認為
 
的重心最低(只須填圖形的編號,不必計算).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的長度為b.
(1)圖形①中∠B=
 
°,圖形②中∠E=
 
°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”.
①小明僅用“風箏一號”紙片拼成一個邊長為b的正十邊形,需要這種紙片
 
 張;
②小明若用若干張“風箏一號”紙片和“飛鏢一號”紙片拼成一個“大風箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°,圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的程度為b.
(1)圖形①中∠B=
72
72
度,圖形②∠E中=
36
36
度;
(2)愛動腦筋的小聰同學,將圖形①命名為“風箏一號”,圖形②命名為“飛鏢一號”,他用這兩種紙片各若干張,設計了以下拼圖游戲,請你和他一起玩吧:

①若僅用“風箏一號”拼成一個邊長為b的正十邊形(正十邊形是指所有的邊相等,所有的角也相等的十邊形),需要這種紙片
5
5
張;
②若同時使用若干張“風箏一號”和“飛鏢一號”拼成了一個“大風箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ,請你在圖3中畫出拼接餡餅保留作圖痕跡.
(本題中均為無重疊、無縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•常州)已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的長度為b.

(1)圖形①中∠B= 72 °,圖形②中∠E= 36 °;

(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”.

①小明僅用“風箏一號”紙片拼成一個邊長為b的正十邊形,需要這種紙片 5 張;

②小明若用若干張“風箏一號”紙片和“飛鏢一號”紙片拼成一個“大風箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省常州市中考數(shù)學試卷 題型:解答題

(2011•常州)已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的長度為b.

(1)圖形①中∠B= 72 °,圖形②中∠E= 36 °;

(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”.

①小明僅用“風箏一號”紙片拼成一個邊長為b的正十邊形,需要這種紙片 5 張;

②小明若用若干張“風箏一號”紙片和“飛鏢一號”紙片拼成一個“大風箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)

 

查看答案和解析>>

同步練習冊答案