【題目】如圖,ABC中,AB=AC=4,cosC=.
(1)動(dòng)手操作:利用尺規(guī)作以AC為直徑的⊙O,并標(biāo)出⊙O與AB的交點(diǎn)D,與BC的交點(diǎn)E(保留作圖痕跡,不寫(xiě)作法).
(2)綜合應(yīng)用:在你所作的圓中,求證: ;
(3)求△BDE的周長(zhǎng).
【答案】(1)作圖見(jiàn)解析;(2)證明見(jiàn)解析;(3)△BDE的周長(zhǎng)為8+.
【解析】試題分析:做AC的中垂線(xiàn)得出圓心的位置;(2)連接AE,根據(jù)直徑的性質(zhì)得出∠AEC=∠AEB=90°,根據(jù)AB=AC得出∠BAE=∠CAE,從而得出∠CAE=∠BAE,得出弧相等;(3)根據(jù)Rt△ACE的三角形函數(shù)得出CE的長(zhǎng)度,根據(jù)(2)得出BE=CE=DE=4,根據(jù)Rt△BCD中∠B的三角函數(shù)得出BC和BD的長(zhǎng)度,從而得出三角形周長(zhǎng).
試題解析:(1)如圖1,⊙O為所求.
(2)證明:如圖,連接AE, ∵AC為⊙O的直徑,點(diǎn)E在⊙O上,∴∠AEC=90°,
∵AB=AC,∴∠BAE =∠CAE, ∴.
(3)解:如圖在Rt△ACE中,
, ,∴.
∵AB= AC,∠AEC=90°,∴∠B =∠ACB,BE= CE=4. 又 ,∴DE= CE=4.
在Rt△BCD中, , ∵,BC=8,
∴,
∴的周長(zhǎng) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上把-3的對(duì)應(yīng)點(diǎn)移動(dòng)4個(gè)單位后,所得的對(duì)應(yīng)點(diǎn)表示的數(shù)是( )
A.1
B.-7
C.1或-7
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程mx-2y=x+5是二元一次方程時(shí),m的取值為( )
A. m≠1B. m≠-1C. m≠0D. m≠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如本題圖①,在△ABC中,已知. 過(guò)點(diǎn)A作BC的平行線(xiàn)與∠ABC的平分線(xiàn)交于點(diǎn)D,連接CD.
(1)求的大;
(2)在線(xiàn)段的延長(zhǎng)線(xiàn)上取一點(diǎn),以為角的一邊作,另一邊交BD延長(zhǎng)線(xiàn)于點(diǎn)E, 若(如本題圖②所示),試求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二元一次方程x+2y=3,用y表示x,則x=________,當(dāng)x=0時(shí),y=____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列各式是否正確.
(1)若|a|>|b|,則a>b;( ).
(2)若a>b,則|a|>|b|;( ).
(3)若a>b,則|b-a|=a-b.( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣x+k=0的一個(gè)根是2,則k的值是( 。
A.﹣2
B.2
C.1
D.﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com