對于任意三角形的高,下列說法不正確的是(   )

A.銳角三角形有三條高

B.直角三角形只有一條高

C.鈍角三角形有兩條高在三角形的外部

D.任意三角形都有三條高

 

【答案】

B

【解析】

試題分析:根據(jù)高的定義,再結(jié)合三角形的形狀依次分析各項(xiàng)即可判斷。

A.C.D.均正確;

B.直角三角形有三條高,故本選項(xiàng)錯(cuò)誤。

考點(diǎn):本題考查的是三角形的高

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握三角形的高是指從三角形的一個(gè)頂點(diǎn)向?qū)呑鞔咕,連接頂點(diǎn)與垂足之間的線段.同時(shí)掌握任意三角形都有三條高。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個(gè)共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進(jìn)行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
b
2
,BD=c-
b
2
,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時(shí)把設(shè)想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測”這一認(rèn)識過程中,用到了下列四種數(shù)學(xué)思想方法中的哪一種選出一個(gè)正確的并將其序號填在括號內(nèi)( 。
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④精英家教網(wǎng)數(shù)形結(jié)合的思想方法
(2)這個(gè)猜測是否正確,請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于任意三角形的高,下列說法不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

對于任意三角形的高,下列說法不正確的是


  1. A.
    銳角三角形有三條高
  2. B.
    直角三角形只有一條高
  3. C.
    鈍角三角形有兩條高在三角形的外部
  4. D.
    任意三角形都有三條高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個(gè)共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進(jìn)行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=數(shù)學(xué)公式,BD=c-數(shù)學(xué)公式,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時(shí)把設(shè)想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測”這一認(rèn)識過程中,用到了下列四種數(shù)學(xué)思想方法中的哪一種選出一個(gè)正確的并將其序號填在括號內(nèi)
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④數(shù)形結(jié)合的思想方法
(2)這個(gè)猜測是否正確,請證明.

查看答案和解析>>

同步練習(xí)冊答案