【題目】在數(shù)-5,1,-3,5,-2中任取三個數(shù)相乘,其中最大的積是a,最小的積是b.

(1)a,b的值;

(2)|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.

【答案】(1) -30 (2)

【解析】

1)根據(jù)兩數(shù)相乘同號得正,異號得負(fù),正數(shù)大于負(fù)數(shù)求解即可;

(2)先把(1)中求得的把a,b的值代入|xa||yb|0,根據(jù)絕對值的非負(fù)性求出xy的值,然后再把求得的xy的值代入(xy)÷(xy)計算即可.

(1)a=(-3)×(-5)×5=75,

b=(-2)×(-3)×(-5)=-30

(2)|x+a|+|y-b|=0,

|x+a|=0,|y-b|=0,

|x+75|=0,|y-(-30)|=0,

解得x=-75,y=-30,

(x+y)÷(x-y)

=[(-75)+(-30)]÷[(-75)-(-30)]

=(-105)÷(-45)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,C為⊙O上一點,點D是 的中點,DE⊥AC于E,DF⊥AB于F.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OF=4,求AC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AFAB,BD于點E,N,M,連接EO,已知BD=

(1)求正方形ABCD的邊長;

(2)求OE的長;

(3)①求證:CNAF;

②直接寫出四邊形AFBO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點A(x1 , y1)和點B(x2 , y2)是反比例函數(shù)y= 圖象上的兩點,當(dāng)x1<x2<0時,y1>y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是(
A. ??
B. ??
C.π﹣ ??
D.π﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點B坐標(biāo)為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;

(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y= 的圖象交于P、G兩點,過點P作PA⊥x軸,一次函數(shù)圖象分別交x軸、y軸于C、D兩點, = ,且SADP=6.
(1)求點D坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的表達式;
(3)根據(jù)圖象直接寫出一次函數(shù)值小于反比例函數(shù)值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ADBC,EAB邊上一點,BCE=15°,EFADDC于點F.

(1)依題意補全圖形,求∠FEC的度數(shù);

(2)若∠A=140°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點A,B(點A在點B的右側(cè)),與y軸相交于點C(0,﹣3).

(1)求拋物線的函數(shù)表達式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案