(1)已知Rt△ABC中,∠C=90°,AC=
3
,BC=2,則tanB=
3
2
3
2

(2)已知sinα•cos30°=
3
4
,則銳角α=
30
30
度.
分析:(1)在Rt△ABC中,tanB=
AC
BC
,代入即可得出答案;
(2)先求出sinα的值,繼而得出α的度數(shù).
解答:解:(1)tanB=
AC
BC
=
3
2
;
(2)sinα=
3
4
÷
3
2
=
1
2
,
故銳角α=30°.
故答案為:
3
2
、30°.
點評:本題考查了特殊角的三角函數(shù)值及銳角三角函數(shù)的定義,屬于基礎(chǔ)題,熟練記憶一些特殊角的三角函數(shù)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、已知Rt△ABC中,∠B=90°.
(1)根據(jù)要求作圖(尺規(guī)作圖,保留作圖痕跡,不寫畫法).
①作∠BAC的平分線AD交BC于D;
②作線段AD的垂直平分線交AB于E,交AC于F,垂足為H;
③連接ED.
(2)在(1)的基礎(chǔ)上寫出一對相似比不為1的相似三角形和一對全等三角形:
AHF
∽△
ABD
;△
AHF
≌△
AHE

并選擇其中一對加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知Rt△ABC中,∠C=90°,沿過B點的一條直線BE折疊這個三角形,使C點落在A精英家教網(wǎng)B邊上的點D、要使點D恰為AB的中點,問在圖中還要添加什么條件?(直接填寫答案)
(1)寫出兩條邊滿足的條件:
 

(2)寫出兩個角滿足的條件:
 
;
(3)寫出一個除邊、角以外的其他滿足條件:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.以AQ、PQ為邊作平行四邊形AQPD,連接DQ,交AB于點E.設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:

(1)用含有t的代數(shù)式表示AE=
5-t
5-t

(2)當(dāng)t為何值時,平行四邊形AQPD為矩形.
(3)如圖2,當(dāng)t為何值時,平行四邊形AQPD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠C=90°,AC=3,∠A=20°,則AB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠A=90°,AC=8,BC=10,將△ABC沿直線ED折疊,使點B與點C重合,點A落在點F處,如圖所示.
(1)求AB的長;
(2)求△ABC折疊后重疊部分(△CDE)的面積.

查看答案和解析>>

同步練習(xí)冊答案