如圖,·O是ΔABC的外接圓,F(xiàn)H是·O的切線,切點(diǎn)為F,F(xiàn)H//BC,連接AF交BC于點(diǎn)E,∠ABC的平分線BD交AF于點(diǎn)D,連接BF。
【小題1】求證AF平分∠BAC
【小題2】求證BF=DF
【小題3】若EF=4,DE=3,求AD的長。

【小題1】見解析
【小題2】見解析
【小題3】解析:
證明:(1)連接OF
∴FH切·O于點(diǎn)F
∴OF⊥FH …………………………  1分
∵BC | | FH
∴OF⊥BC ………………………… 2分
∴BF="CF" ………………………… 3分
∴∠BAF=∠CAF           
即AF平分∠BAC…………………4分
(2) ∵∠CAF=∠CBF
又∠CAF=∠BAF
∴∠CBF=∠BAF ………………………… 6分
∵BD平分∠ABC
∴∠ABD=∠CBD
∴∠BAF+∠ABD=∠CBF+∠CBD
即∠FBD=∠FDB………………………… 7分
∴BF="DF" ………………………… 8分
(3) ∵∠BFE=∠AFB   ∠FBE=∠FAB
∴ΔBEF∽ΔABF…………………………  9分
  即BF2=EF·AF …………………… 10分
∵EF=4   DE=3  ∴BF="DF" =4+3=7
AF=AD+7
即4(AD+7)=49  解得AD=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案