【題目】如圖,AB=AC,CD⊥AB于點D,BE⊥AC于點E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關(guān)系,并加以證明.
【答案】
(1)證明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵
∴△ACD≌△ABE(AAS),
∴AD=AE
(2)猜想:OA⊥BC.
證明:連接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.
【解析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm /s,連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC.
(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.
(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把兩根鋼條AA′,BB′的中點O連在一起,可以做成一個測量工件內(nèi)槽寬的工具(工人把這種工具叫卡鉗)只要量出A′B′的長度,就可以知道工件的內(nèi)徑AB是否符合標準,你能簡要說出工人這樣測量的道理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是AC上一點,BD=CE,∠1=∠2,試判斷BC與AE的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時,求AP的長;
(2)證明:在運動過程中,點D是線段PQ的中點;
(3)當(dāng)運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是必然事件的是( 。
A.明天太陽從西方升起
B.打開電視機,正在播放廣告
C.擲一枚硬幣,正面朝上
D.任意一個三角形,它的內(nèi)角和等于180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若( ☆3)☆(﹣ )=8,求a的值;
(3)若2☆x=m,( x)☆3=n(其中x為有理數(shù)),試比較m,n的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)求證:∠B=∠DEF;
(3)當(dāng)∠A=40°時,求∠DEF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com