【題目】如圖,已知四邊形ABCD為正方形,點(diǎn)E是邊AD上任意一點(diǎn),△ABE接逆時(shí)針方向旋轉(zhuǎn)一定角度后得到△ADF,延長BE交DF于點(diǎn)G,且AF=4,AB=7.
(1)請指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求BE的長;
(3)試猜測BG與DF的位置關(guān)系,并說明理由.
【答案】(1)旋轉(zhuǎn)中心A點(diǎn),旋轉(zhuǎn)角度是90°;(2);(3)BG⊥DF,理由見解析
【解析】
(1)根據(jù)圖形和已知的△ABE旋轉(zhuǎn)得到△ADF即可得出答案,
(2)根據(jù)旋轉(zhuǎn)求出AE,根據(jù)勾股定理求出BE即可,
(3)根據(jù)全等求出∠ADF=∠ABE,根據(jù)三角形的內(nèi)角和定理求出∠DGE=90°即可解題.
解:(1)旋轉(zhuǎn)中心A點(diǎn),旋轉(zhuǎn)角度是90°.
(2)∵△ABE接逆時(shí)針方向旋轉(zhuǎn)一定角度后得到△ADF,
∴△ABE≌△ADF,
∴AF=AE=4,
∵四邊形ABCD為正方形,
∴∠BAE=90°,
由勾股定理得:BE===,
答:BE的長是.
(3)BG與DF的位置關(guān)系是垂直,
理由是:∵△ABE≌△ADF,
∴∠EBA=∠ADF,
∵∠EBA+∠AEB=180°﹣90°=90°,
∵∠AEB=∠DEG,
∴∠DEG+∠ADF=90°,
∴∠DGE=180°﹣(∠DEG+∠ADF)=90°,
∴BG⊥DF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為千米,出租車離甲地的距離為千米,兩車行駛的時(shí)間為小時(shí),、關(guān)于的函數(shù)圖像如圖所示:
(1)根據(jù)圖像,求出、關(guān)于的函數(shù)關(guān)系式;
(2)設(shè)兩車之間的距離為千米.
①求兩車相遇前關(guān)于的函數(shù)關(guān)系式;
②求出租車到達(dá)甲地后關(guān)于的函數(shù)關(guān)系式;
(3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車進(jìn)入加油站時(shí),出租車恰好進(jìn)入加油站,求加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′交CD于E,D′C′交CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子里裝有紅、黃、藍(lán)三種顏色的球(除顏色以外,其余都相同),其中紅球2個(gè),黃球2個(gè),從中隨機(jī)摸出一個(gè)球是藍(lán)色球的概率為 .
(1)求袋子里藍(lán)色球的個(gè)數(shù);
(2)甲、乙兩人分別從袋中摸出一個(gè)球(不放回),求摸出的兩個(gè)球中一個(gè)是紅球一個(gè)是黃球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)初中組織了“英語手抄報(bào)”征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按A、B、C、D四個(gè)等級進(jìn)行評價(jià),并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)抽取了_____份作品;
(2)此次抽取的作品中等級為B的作品有______份,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共征集到600份作品,請估計(jì)等級為A的作品約有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)一元二次方程的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根 D.無法確定
【答案】A.
【解析】
試題∵△=,∴方程有兩個(gè)不相等的實(shí)數(shù)根.故選A.
考點(diǎn):根的判別式.
【題型】單選題
【結(jié)束】
9
【題目】已知直線y=kx(k>0)與雙曲線交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),則x1y2+x2y1的值為【 】
A.﹣6 B.﹣9 C.0 D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)D、E分別在△ABC的邊AB、AC上,下列給出的條件中,不能判定DE∥BC的是( 。
A. BD:AB=CE:AC B. DE:BC=AB:AD C. AB:AC=AD:AE D. AD:DB=AE:EC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓 O 的半徑為 1,過點(diǎn) A(2,0)的直線與圓 O 相切于點(diǎn) B,與 y 軸相交于點(diǎn) C.
(1)求 AB 的長;
(2)求直線 AB 的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com