【題目】如圖,在Rt△ABC中,∠BAC=90°.如果將該三角形繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,點B1恰好落在邊BC的中點處.那么旋轉(zhuǎn)的角度等于(
A.55°
B.60°
C.65°
D.80°

【答案】B
【解析】解:∵在Rt△ABC中,∠BAC=90°,將該三角形繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,點B1恰好落在邊BC的中點處, ∴AB1= BC,BB1=B1C,AB=AB1
∴BB1=AB=AB1
∴△ABB1是等邊三角形,
∴∠BAB1=60°,
∴旋轉(zhuǎn)的角度等于60°.
故選:B.
【考點精析】本題主要考查了旋轉(zhuǎn)的性質(zhì)的相關(guān)知識點,需要掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,……叫做三角形數(shù),它有一定的規(guī)律性,若把第一個三角形數(shù)記為a1 ,第二個三角數(shù)形記為a 2 ,……,第n個三角形數(shù)記為an,計算a2-a1,a 3-a2……由此推算a 100-a 99 =________;a100=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題7)如圖,在RtABCACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,AB、DE交于點F.

(1)判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=13,AC=20,BC=21,ADBC,垂足為點D.

(1)求BD、CD的長;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是 的中點,連接AC、BC,則圖中陰影部分面積是(
A. ﹣2
B. ﹣2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)有( )

①-a一定是負(fù)數(shù);②|-a|一定是正數(shù);③倒數(shù)等于它本身的數(shù)是±1;

④絕對值等于它本身的數(shù)是1;⑤兩個有理數(shù)的和一定大于其中每一個加數(shù);⑥若 ,則a=b.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某校九年級男子立定跳遠(yuǎn)成績的統(tǒng)計圖,從左到右各分?jǐn)?shù)段的人數(shù)之比為12564,第四組的頻數(shù)是12.有下面的4個結(jié)論:

①一共測試了36名男生的成績;②男子立定跳遠(yuǎn)成績的中位數(shù)分布在1.8~2.0組;③男子立定跳遠(yuǎn)成績的平均數(shù)不超過2.2;④如果男子立定跳遠(yuǎn)成績低于1.85 m為不合格,那么不合格人數(shù)為6人.

其中結(jié)論正確的是(  )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1、A2、A3、…、An、An+1是x軸上的點,且OA1=A1A2=A2A3=…=AnAn+1=1,分別過點A1、A2、A3、…、An、An+1作x軸的垂線交直線y=2x于點B1、B2、B3、…、Bn、Bn+1 , 連接A1B2、B1A2、A2B3、B2A3、…、AnBn+1、BnAn+1 , 依次相交于點P1、P2、P3、…、Pn . △A1B1P1、△A2B2P2、△AnBnPn的面積依次記為S1、S2、S3、…、Sn , 則Sn為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案