【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

【答案】涼亭P到公路l的距離為273.2m.

【解析】PDABD,構(gòu)造出RtAPDRtBPD,根據(jù)AB的長度.利用特殊角的三角函數(shù)值求解.

PDABD.

BD=x,則AD=x+200.

∵∠EAP=60°,

∴∠PAB=90°﹣60°=30°.

RtBPD中,

∵∠FBP=45°,

∴∠PBD=BPD=45°,

PD=DB=x.

RtAPD中,

∵∠PAB=30°,

CD=tan30°AD,

DB=CD=tan30°AD=x=(200+x),

解得:x≈273.2,

CD=273.2.

答:涼亭P到公路l的距離為273.2m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,點E為邊CD的中點,若菱形ABCD的周長為16,BAD=60°,OCE的面積是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c的圖象經(jīng)過點A3,3)、B40)和原點O,P為直線OA上方拋物線上的一個動點.

1)求直線OA及拋物線的解析式;

2)過點Px軸的垂線,垂足為D,并與直線OA交于點C,當△PCO為等腰三角形時,求D的坐標;

3)設P關于對稱軸的點為Q,拋物線的頂點為M,探索是否存在一點P,使得△PQM的面積為,如果存在,求出P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣14),對稱軸交x軸于點F

1)請直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;

3)如圖2,點D是拋物線上一動點,它的橫坐標為m,且﹣3m<﹣1,過點DDKx軸于點K,DK分別交線段AEAC于點G、H.在點D的運動過程中,

DGGH、HK這三條線段能否相等?若相等,請求出點D的坐標;若不相等,請說明理由;

②在①的條件下,判斷CGAE的數(shù)量關系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果

下面有三個推斷:

①當拋擲次數(shù)是100時,計算機記錄正面向上的次數(shù)是47,所以正面向上的概率是0.47

②隨著試驗次數(shù)的增加,正面向上的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計正面向上的概率是0.5

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,正面向上的頻率一定是0.45

其中合理的是(  )

A.B.C.①②D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年5月的第二個星期日即為母親節(jié),父母恩深重,恩憐無歇時,許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購了一批康乃馨,經(jīng)分析上一年的銷售情況,發(fā)現(xiàn)這種康乃馨每天的銷售量y(支)是銷售單價x(元)的一次函數(shù),已知銷售單價為7/支時,銷售量為16支;銷售單價為8/支時,銷售量為14支.

1)求這種康乃馨每天的銷售量y(支)關于銷售單價x(元/支)的一次函數(shù)解析式;

2)若按去年方式銷售,已知今年這種康乃馨的進價是每支5元,商家若想每天獲得42元的利潤,銷售單價要定為多少元?

3)在(2)的條件下,當銷售單價x為何值時,花店銷售這種康乃馨每天獲得的利潤最大?并求出獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】植樹節(jié)期間,某校倡議學生利用雙休日“植樹”勞動,為了解同學們勞動情況.學校隨機調(diào)查了部分學生的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回顧下列:

(1)通過計算,將條形圖補充完整;

(2)扇形圖形中“1.5小時”部分圓心角是 ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為正整數(shù)的正方形ABCD被分成了四個小長方形且點E,F,G,H在同一直線上(點F在線段EG上),點E,N,H,M在正方形ABCD的邊上,長方形AEFM,GNCH的周長分別為610.則正方形ABCD的邊長的最小值為(  )

A.3B.4C.5D.不能確定

查看答案和解析>>

同步練習冊答案