【題目】一次函數(shù)與反比例函數(shù)在同一直角坐標(biāo)系內(nèi)的圖像的大致位置是圖中的(

A.B.C.D.

【答案】C

【解析】

分別根據(jù)反比例函數(shù)及一次函數(shù)圖象的特點對四個選項進(jìn)行逐一分析即可.

解:A、∵由反比例函數(shù)的圖象在一、三象限可知,k0,∴-k2-10,∴一次函數(shù)y=kx-k2-1的圖象經(jīng)過一、三、四象限,故本選項錯誤;
B、∵由反比例函數(shù)的圖象在二、四象限可知,k0,∴-k2-10,∴一次函數(shù)y=kx-k2-1的圖象經(jīng)過二、三、四象限,故本選項錯誤;
C、∵由反比例函數(shù)的圖象在二、四象限可知,k0,∴-k2-10,∴一次函數(shù)y=kx-k2-1的圖象經(jīng)過二、三、四象限,故本選項正確;
D、∵由反比例函數(shù)的圖象在一、三象限可知,k0,∴-k2-10,∴一次函數(shù)y=kx-k2-1的圖象經(jīng)過一、三、四象限,故本選項錯誤.
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像如圖所示,頂點為,有下列結(jié)論:①;②;③;④,其中,正確結(jié)論有________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?

1)(2x+3)2 -16=0

23x2+x-1=0

33x(x-1)=2-2x

49(3x-1)2 =(2-x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

配方法是初中數(shù)學(xué)中經(jīng)常用到的一個重要方法,學(xué)好配方法對我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是

將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程,則,∴ .方程 、.則有,

.解得.方程,則有,

.解得,根據(jù)以上材料解答下列各題:

1)若.求的值;

2.求的值;

3)若表示ABC的三邊,且,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB xm,花園面積S.

1)求S關(guān)于x的函數(shù)關(guān)系式,求x的取值范圍;

2)若在P處有一棵樹與墻CD,AD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要建一個底面積為130平方米的倉庫,倉庫一邊靠墻(墻長16),并在與墻平行的一邊開道1米寬的門,現(xiàn)有能圍成32米長的木板.請你設(shè)計如何搭建比較合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線:和直線:交于點A2,1);

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積;

3)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個三位數(shù),十位數(shù)字等于百位數(shù)字與個位數(shù)字的平均數(shù),我們稱這個三位數(shù)為“順子數(shù)”,例如:630,123.

如果一個三位數(shù),十位數(shù)字等于百位數(shù)字與個位數(shù)字的積的算術(shù)平方根,我們稱這個三位數(shù)為“和諧數(shù)”,例如:139,124.

(1)若三位數(shù)是“順子數(shù)”,且各位數(shù)字之和大于7小于10,且百位數(shù)字a使得一元二次方程(a﹣5)x2+2ax+a﹣6=0有實數(shù)根,求這個“順子數(shù)”;

(2)若三位數(shù)既是“順子數(shù)”又是“和諧數(shù)”,請?zhí)剿鱝,b,c三者的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,如圖,點D是△ABC的邊AB的中點,四邊形BCED是平行四邊形.

1)求證:四邊形ADCE是平行四邊形;

2)在△ABC中,若ACBC,則四邊形ADCE   ;(只寫結(jié)論,不需證明)

3)在(2)的條件下,當(dāng)ACBC時,求證:四邊形ADCE是正方形.

查看答案和解析>>

同步練習(xí)冊答案