【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉△ABF的位置.
(1)旋轉中心是點 ,旋轉角度是 度;
(2)若連結EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
【答案】(1)A、90;(2)等腰直角;(3)AE=.
【解析】試題分析:(1)根據(jù)旋轉變換的定義,即可解決問題;
(2))根據(jù)旋轉變換的定義,即可解決問題;
(3)根據(jù)旋轉變換的定義得到△ADE≌△ABF,進而得到S四邊形AECF=S正方形ABCD=25,求出AD的長度,即可解決問題..
試題解析:(1)如圖,由題意得:旋轉中心是點A,旋轉角度是90度,
故答案為A、90;
(2)由題意得:AF=AE,∠EAF=90°,
∴△AEF為等腰直角三角形.
故答案為:等腰直角;
(3)由題意得:△ADE≌△ABF,
∴S四邊形AECF=S正方形ABCD=25,
∴AD=5,而∠D=90°,DE=2,
∴AE= .
科目:初中數(shù)學 來源: 題型:
【題目】為了更好改善河流的水質,治污公司決定購買10臺污水處理設備現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經(jīng)調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元.
A型 | B型 | |
價格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在ABCD中,點E,F(xiàn)在對角線BD上,且BE=DF,
求證:(1)AE=CF;(2)四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】梅嶺中學為了解“課程選修”的情況,對報名參加“藝術欣賞”,“科技制作”,“數(shù)學思維”,“閱讀寫作”這四個選修項目的學生(每人限報一課)進行抽樣調查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調查了______名學生,扇形統(tǒng)計圖中“藝術欣賞”部分的圓心角是______度;
(2)請把這個條形統(tǒng)計圖補充完整;
(3)現(xiàn)該校共有800名學生報名參加這四個選修項目,請你估計其中有多少名學生選修 “科技制作”項目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.
求購買1副乒乓球拍和1副羽毛球拍各需多少元;
若學校購買乒乓球拍和羽毛球拍共30副,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:線段CB=6,點A在線段BC上,且CA=2,以AB為直徑做半圓O,點D為半圓O上的動點,以CD為邊向外作等邊△CDE.
(1)發(fā)現(xiàn):CD的最小值是 , 最大值是 , △CBD面積的最大值是 .
(2)思考:如圖1,當線段CD所在直線與半圓O相切時,求弧BD的長.
(3)探究:如圖2,當線段CD與半圓O有兩個公共點D,M時,若CM=DM,求等邊△CDE面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,過A點作AG∥DB,交CB的延長線于點G.
(1)求證:DE∥BF;
(2)若∠G=90,求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知n邊形的內(nèi)角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com