【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過點B作BD⊥AB,點C,D都在AB上方,AD交△BCD的外接圓⊙O于點E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長.
②若△BDC為直角三角形,求所有滿足條件的BD的長.
(3)若BC=EC= ,則= .(直接寫出結(jié)果即可)
【答案】(1)見解析;(2)①AE=,②BD= ;(3).
【解析】
(1)利用圓的內(nèi)接四邊形的性質(zhì)以及等角的余角相等的性質(zhì)易證明出結(jié)論成立;
(2)延長AC交BD于點F,利用平行線等分線段和相似三角形對應(yīng)邊成比例求解即可;
(3)利用勾股定理和相似三角形分別求出AE和BD的長,依據(jù)對應(yīng)邊等高三角形的面積比是對應(yīng)邊之比,進而求解;
證明:(1)∵四邊形BCED內(nèi)接于⊙O
∴∠AEC=∠DBC
又∵DB⊥AB
∴∠ABC+∠DBC=90°
又∵∠ACB=90°
∴在Rt△ABC中,∠CAB+∠ABC=90°
∴∠DBC=∠CAB
∴∠CAB=∠AEC
(2)①如圖1延長AC交BD于點F,延長EC交AB于點G.
∵在Rt△ABC中,AB=5,BC=3
∴由勾股定理得,AC=4
又∵BC⊥AF,AB⊥BF
∠AFB=∠BFC
∴Rt△AFB∽Rt△BFC
∴
∴BC2=CFAC
即9=CF4,解得,CF=
又∵EC∥BD
∴CG⊥AB
∴ABCG=ACBC
即5CG=4×3,解得,CG=
又∵在Rt△ACG中,AG==
又∵EC∥DB
∴∠AEC=∠ADB
由(1)得,∠CAB=∠AEC
∴∠ADB=∠CAB
又∵∠ACB=∠DBA=90°
∴Rt△ABC∽Rt△DBA
∴
得AD=
又∵EG∥BD
∴
得AE=
②當(dāng)△BDC是直角三角形時,如圖二所示
∵∠BCD=90°
∴BD為⊙O直徑
又∵∠ACB=90°
∴A、C、D三點共線
即BC⊥AD時垂足為C,此時C點與E點重合.
又∵∠DAB=∠BAC,∠ACB=ABD=90°
∴Rt△ACB∽Rt△ABD
∴
得AD=
又∵在Rt△ABD中,BD=
③如圖三,由B、C、E都在⊙O上,且BC=CE=
∴
∴∠ADC=∠BDC
即DC平分∠ADB
過C作CM⊥BD,CN⊥AD,CH⊥AB垂足分別為M、N.,H.
∵在Rt△ACB中AB=5,BC=
∴AC=2
又∵在Rt△ACB中CH⊥AB
∴ABCH=ACBC
即5CH=2×
解得,CH=2
∴MB=2
又∵DC平分∠ADB
∴CM=CN
又∵在Rt△CHB中BC=5,CH=2
∴HB=1
∴CM=CN=1
又∵在△DCN與△DCM中
∴△DCN與△DCM(AAS)
∴DN=DM
設(shè)DN=DM=x
則BD=x+2,AD=x+
在Rt△ABD中由AB2+BD2=AD2得,
25+(x+2)2=(x+)2
解得,x=
∴BD=BM+MD=2+=
又由(1)得∠CAB=∠AEC,且∠ENC=∠ACB
∴△ENC∽△ACB
∴
∴NE=2
又∵在Rt△CAN中CN=1,AC=2
∴AN==
∴AE=AN+NE=+2
又∵S△BCD=BDCM,S△ACE=AECN,CM=CN
∴
故.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于,且.點從點出發(fā),沿方向勻速運動,速度為;同時直線由點出發(fā)沿方向勻速運動,速度為,運動過程中始終保持,直線交于,交于,連接,設(shè)運動時間為.
(1)___________,__________,_____________;(用含的式子表示)
(2)當(dāng)四邊形是平行四邊形時,求的值;
(3)當(dāng)點在線段的垂直平分線上時,求的值;
(4)是否存在時刻,使以為直徑的圓與的邊相切?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,點為的中點.
問題發(fā)現(xiàn)
如圖①,若點分別是的中點,連接則線段與的數(shù)量關(guān)系是 ___ _,線段與的位置關(guān)系是 ___ _;
拓展探究
如圖②,若點分別是上的點,且連接上述結(jié)論是否依然成立?若成立,請給出證明;若不成立,請說明理由;
解決問題
當(dāng)點分別為延長線上的點,且連接直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學(xué)科,B:1個學(xué)科,C:2個學(xué)科,D:3個學(xué)科,E:4個學(xué)科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)請將圖2的統(tǒng)計圖補充完整;
(2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是 個學(xué)科;
(3)若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個學(xué)科(含3個學(xué)科)以上的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調(diào)查了若干學(xué)生的興趣愛好;并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次研究中,一共調(diào)查了______名學(xué)生;若該校共有1500名學(xué)生,估計全校愛好運動的學(xué)生共有______名;
(2)補全條形統(tǒng)計圖,并計算閱讀部分圓心角是______度;
(3)若該校九年級愛好閱讀的學(xué)生有150人,估計九年級有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為雙曲線上的一點,連接并延長與雙曲線在第三象限交于點,為軸正半軸上一點,連接并延長與雙曲線交于點,連接、,已知的面積為6,則點的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,為直徑,為上一點.
(Ⅰ)如圖①,過點作的切線,與的延長線相交于點,若,求的大;
(Ⅱ)如圖②,為優(yōu)弧上一點,且的延長線經(jīng)過的中點,連接與相交于點,若,求的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com