【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動,設(shè)移動時(shí)間為t秒.
(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:
PA= , PC=;
(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動,Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動到終點(diǎn)A.在點(diǎn)Q開始運(yùn)動后,P,Q兩點(diǎn)之間的距離能否為2個(gè)單位?如果能,請求出此時(shí)點(diǎn)P表示的數(shù);如果不能,請說明理由.

【答案】
(1)t;34﹣t
(2)解:當(dāng)P點(diǎn)在Q點(diǎn)右側(cè),且Q點(diǎn)還沒有追上P點(diǎn)時(shí),

3t+2=14+t

解得:t=6,

∴此時(shí)點(diǎn)P表示的數(shù)為﹣4,

當(dāng)P點(diǎn)在Q點(diǎn)左側(cè),且Q點(diǎn)追上P點(diǎn)后,相距2個(gè)單位,

3t﹣2=14+t解得:t=8,

∴此時(shí)點(diǎn)P表示的數(shù)為﹣2,

當(dāng)Q點(diǎn)到達(dá)C點(diǎn)后,當(dāng)P點(diǎn)在Q點(diǎn)左側(cè)時(shí),

14+t+2+3t﹣34=34

解得:t=13,

∴此時(shí)點(diǎn)P表示的數(shù)為3,

當(dāng)Q點(diǎn)到達(dá)C點(diǎn)后,當(dāng)P點(diǎn)在Q點(diǎn)右側(cè)時(shí),

14+t﹣2+3t﹣34=34

解得:t=14,

∴此時(shí)點(diǎn)P表示的數(shù)為4,

綜上所述:點(diǎn)P表示的數(shù)為﹣4,﹣2,3,4


【解析】解:(1)∵動點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動,設(shè)移動時(shí)間為t秒,
∴P到點(diǎn)A的距離為:PA=t,P到點(diǎn)C的距離為:PC=(24+10)﹣t=34﹣t;
所以答案是:t,34﹣t;
【考點(diǎn)精析】掌握數(shù)軸和兩點(diǎn)間的距離是解答本題的根本,需要知道數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線;同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)A在y軸正半軸上,點(diǎn)B的坐標(biāo)為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn)且SPAD=S正方形ABCD;求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(1,a)和點(diǎn)N(﹣2,b)是一次函數(shù)y=﹣3x+1圖象上的兩點(diǎn),則ab的大小關(guān)系是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點(diǎn).

(1)試求拋物線的解析式;

(2)記拋物線頂點(diǎn)為D,求△BCD的面積;

(3)若直線向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要反映我區(qū)1211日至17日這一周每天的最高氣溫的變化趨勢,宜采用( 。

A. 條形統(tǒng)計(jì)圖 B. 折線統(tǒng)計(jì)圖

C. 扇形統(tǒng)計(jì)圖 D. 頻數(shù)分布統(tǒng)計(jì)圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1個(gè)△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長CA1到A2 , 使A1A2=A1D,得到第2個(gè)△A1A2D;在邊A2D上任取一點(diǎn)E,延長A1A2到A3 , 使A2A3=A2E,得到第3個(gè)△A2A3E,…按此做法繼續(xù)下去,則第n個(gè)三角形中以An為頂點(diǎn)的底角度數(shù)是( )

A.( n75°
B.( n165°
C.( n175°
D.( n85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AC⊥BC,CD∥FG,∠1=∠2,試說明:DE⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(0,1),B(4,1),C為x軸正半軸上一點(diǎn),且AC平分∠OAB.
(1)求證:∠OAC=∠OCA;
(2)如圖2,若分別作∠AOC的三等分線及∠OCA的外角的三等分線交于點(diǎn)P,即滿足∠POC= ∠AOC,∠PCE= ∠ACE,求∠P的大小;
(3)如圖3,在(2)中,若射線OP、OC滿足∠POC= ∠AOC,∠PCE= ∠ACE,猜想∠OPC的大小,并證明你的結(jié)論(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫成省略加號和的形式后為-6-7-2+9的式子是( )

A. (-6)-(+7)-(-2)+(+9) B. -(+6)-(-7)-(+2)-(+9)

C. (-6)+(-7)+(+2)-(-9) D. -6-(+7)+(-2)-(-9)

查看答案和解析>>

同步練習(xí)冊答案