【題目】已知拋物線的頂點(diǎn)坐標(biāo)為M(1,4),且經(jīng)過點(diǎn)N(2,3),與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C、設(shè)直線CMx軸交于點(diǎn)D

(1)求拋物線的解析式.

(2)在拋物線的對稱軸上是否存在點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切?若存在,求出P的坐標(biāo);若不存在.請說明理由.

(3)設(shè)直線ykx+2與拋物線交于Q、R兩點(diǎn),若原點(diǎn)O在以QR為直徑的圓外,請直接寫出k的取值范圍.

【答案】(1)y=﹣x2+2x+3;(2)滿足題意的點(diǎn)P存在,其坐標(biāo)為(1,﹣4+2);(3)k

【解析】

(1)根據(jù)待定系數(shù)法即可解答.

(2) 假設(shè)在x軸上方存在這樣的P點(diǎn),使以P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切,設(shè)P(1,u)其中u>0,得到PA2u2+22,再利用已知條件即可解答.

(3) 設(shè)Px1y1),Qx2,y2),PQ的中點(diǎn)為w,得出解析式進(jìn)而求線段長度,即可解答.

(1)解:由拋物線的頂點(diǎn)是M(1,4),

設(shè)解析式為yax﹣1)2+4(a<0),

又∵拋物線經(jīng)過點(diǎn)N(2,3),

3=a(2﹣1)2+4,解得a=﹣1.

故所求拋物線的解析式為y=﹣(x﹣1)2+4,

y=﹣x2+2x+3;

(2)解:如圖:

假設(shè)在x軸上方存在這樣的P點(diǎn),使以P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切,設(shè)P(1,u)其中u>0,

PA是圓的半徑且PA2u2+22

P做直線CD的垂線,垂足為Q,則PQPA時(shí)以P為圓心的圓與直線CD相切.

由題易得:MDE為等腰直角三角形,故PQM也是等腰直角三角形,

P(1,u)得PEu,PM=|4﹣u|,PQPM

PQ2PA2得方程:

(4﹣u2u2+22,

解得u=﹣4+2,u=﹣4﹣2(不符合題意,舍).

所以,滿足題意的點(diǎn)P存在,其坐標(biāo)為(1,﹣4+2).

(3)如圖,設(shè)Px1y1),Qx2,y2),PQ的中點(diǎn)為w

,消去y得到:x2+(k﹣2)x﹣1=0,

x1+x2=2﹣k,x1x2=﹣1,

y1+y2kx1+x2)+4=﹣k2+2k+4,y1y2k2x1x2)+2kx1+x2)+4=﹣3k2+4k+4,

W,),

PQ

∵原點(diǎn)O在以QR為直徑的圓外,

2OWPQ,

2

整理得:3k2﹣4k﹣3<0,

解得<k<

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為 20 /千克,售價(jià)不低于 20 /千克,且不超過 32 /千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克與該天的售價(jià) x(/千克滿足如下表所示的一次函數(shù)關(guān)系.

銷售量 y(千克)

34.8

32

29.6

28

售價(jià) x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價(jià)為 23.5 /千克,求當(dāng)天該水果的銷售量.

(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,ABBC,∠ABC90°,BMAC邊中線,點(diǎn)D,E分別在邊ACBC,DBDEEFAC于點(diǎn)F,以下結(jié)論:①△BMD≌△DFE;②△NBE∽△DBC;③AC2DF;④EFABCFBC其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的動(dòng)點(diǎn).以BC為邊作正方形BCDE,當(dāng)點(diǎn)C從點(diǎn)A移動(dòng)至點(diǎn)B時(shí),點(diǎn)D經(jīng)過的路徑長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.

下面是小東的探究過程,請補(bǔ)充完整:

(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______

(2)如表是yx的幾組對應(yīng)值

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

m

m的值為_______;

(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形紙片ABCD的邊長為2,ABC=60°,將菱形ABCD沿EF,GH折疊,使得點(diǎn)B,D兩點(diǎn)重合于對角線BD上一點(diǎn)P(如圖2),則六邊形AEFCHG面積的最大值是(

A. B. C. 2﹣ D. 1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE,將ADE沿AE對折到AFE,延長EF交邊BC于點(diǎn)G,連接AG,CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正確的有( )個(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個(gè)角各剪去一個(gè)邊長相同的正方形后,把剩余部分折成一個(gè)無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積264cm2,求剪掉的正方形紙片的邊長

查看答案和解析>>

同步練習(xí)冊答案