【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長(zhǎng)為 .
【答案】2 或2 或2
【解析】解:當(dāng)∠APB=90°時(shí)(如圖1),
∵AO=BO,
∴PO=BO,
∵∠AOC=60°,
∴∠BOP=60°,
∴△BOP為等邊三角形,
∵AB=BC=4,
∴AP=ABsin60°=4× =2 ;
當(dāng)∠ABP=90°時(shí)(如圖2),
∵∠AOC=∠BOP=60°,
∴∠BPO=30°,
∴BP= = =2 ,
在直角三角形ABP中,
AP= =2 ,
情況二:如圖3,∵AO=BO,∠APB=90°,
∴PO=AO,
∵∠AOC=60°,
∴△AOP為等邊三角形,
∴AP=AO=2,
故答案為:2 或2 或2.
利用分類(lèi)討論,當(dāng)∠ABP=90°時(shí),如圖2,由對(duì)頂角的性質(zhì)可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的長(zhǎng),利用勾股定理可得AP的長(zhǎng);當(dāng)∠APB=90°時(shí),分兩種情況討論,情況一:如圖1,利用直角三角形斜邊的中線等于斜邊的一半得出PO=BO,易得△BOP為等邊三角形,利用銳角三角函數(shù)可得AP的長(zhǎng);易得BP,利用勾股定理可得AP的長(zhǎng);情況二:如圖3,利用直角三角形斜邊的中線等于斜邊的一半可得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段 的最小覆蓋圓就是以線段 為直徑的圓.
(1)請(qǐng)分別作出圖①中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)三角形的最小覆蓋圓有何規(guī)律?請(qǐng)直接寫(xiě)出你所得到的結(jié)論(不要求證明);
(3)某城市有四個(gè)小區(qū) (其位置如圖②所示),現(xiàn)擬建一個(gè)手機(jī)信號(hào)基站,為了使這四個(gè)小區(qū)居民的手機(jī)都能有信號(hào),且使基站所需發(fā)射功率最小(距離越小,所需功率越小),此基站應(yīng)建在何處?請(qǐng)寫(xiě)出你的結(jié)論并說(shuō)明研究思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠甲、乙兩個(gè)部門(mén)各有員工400人,為了解這兩個(gè)部門(mén)員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門(mén)各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70-79分為生產(chǎn)技能良好,60-69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門(mén) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
a.估計(jì)乙部門(mén)生產(chǎn)技能優(yōu)秀的員工人數(shù)為_(kāi)_______;
b.可以推斷出________部門(mén)員工的生產(chǎn)技能水平較高,理由為_(kāi)_______.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校以“我最喜愛(ài)的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其他項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
運(yùn)動(dòng)項(xiàng)目 | 頻數(shù) | 頻率 |
籃球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳繩 | 18 | 0.15 |
其他 | 12 | 0.10 |
請(qǐng)根據(jù)以上圖表信息,解答下列問(wèn)題:
(1)頻數(shù)分布表中的m=_________,n=_________;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為_(kāi)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了開(kāi)發(fā)利用海洋資源,某勘測(cè)飛機(jī)預(yù)測(cè)量一島嶼兩端A、B的距離,飛機(jī)在距海平面垂直高度為100米的點(diǎn)C處測(cè)得端點(diǎn)A的俯角為60°,然后沿著平行于AB的方向水平飛行了500米,在點(diǎn)D測(cè)得端點(diǎn)B的俯角為45°,求島嶼兩端A、B的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)相等的兩個(gè)正方形ABCD和OEFG,若將正方形OEFG繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)150°,兩個(gè)正方形的重疊部分四邊形OMCN的面積( )
A. 不變 B. 先增大再減小 C. 先減小再增大 D. 不斷增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形ABCD中,AD=1,CD= ,連接AC,將線段AC、AB分別繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AE、AF,線段AE與弧BF交于點(diǎn)G,連接CG,則圖中陰影部分面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一根長(zhǎng)為5米的竹竿AB斜立于墻MN的右側(cè),底端B與墻角N 的距離為3米,當(dāng)竹竿頂端A下滑x米時(shí),底端B便隨著向右滑行y米,反映y與x變化關(guān)系的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com