【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),籃球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
【答案】(1)黃球有1個(gè);(2);(3).
【解析】
(1)首先設(shè)口袋中黃球的個(gè)數(shù)為x個(gè),根據(jù)題意得:,解此方程即可求得答案.
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案.
(3)由若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的有3種情況,且共有4種等可能的結(jié)果;直接利用概率公式求解即可求得答案.
解:(1)設(shè)口袋中黃球的個(gè)數(shù)為x個(gè),
根據(jù)題意得:,解得:x=1.
經(jīng)檢驗(yàn):x=1是原分式方程的解.
∴口袋中黃球的個(gè)數(shù)為1個(gè).
(2)畫樹狀圖得:
∵共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況,
∴兩次摸出都是紅球的概率為:.
(3)∵摸到紅球得5分,摸到黃球得3分,而乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,
∴乙同學(xué)已經(jīng)得了7分.
∴若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的有3種情況,且共有4種等可能的結(jié)果;
∴若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點(diǎn)D,E分別是邊BC,AC上的動(dòng)點(diǎn),則DA+DE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,弦于點(diǎn),點(diǎn)在上,恰好經(jīng)過圓心,連接.
(1)若,,求的直徑;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線PD垂直平分⊙O的半徑OA于點(diǎn)B,PD交⊙O于點(diǎn)C,D,PE是⊙O的切線,E為切點(diǎn),連結(jié)AE,交CD于點(diǎn)F
(1)若⊙O的半徑為8,求CD的長;
(2)證明:PE=PF;
(3)若PF=13,sinA=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個(gè)紅球和1個(gè)白球,從中隨機(jī)抽出一個(gè)球,一定是紅球
B.天氣預(yù)報(bào)“明天降水概率10%”,是指明天有10%的時(shí)間會(huì)下雨
C.某地發(fā)行一種福利彩票,中獎(jiǎng)率是千分之一,那么,買這種彩票1000張,一定會(huì)中獎(jiǎng)
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△ADE均是等腰直角三角形,直角邊AC、AD在同一條直線上,點(diǎn)G、H分別是斜邊DE、BC的中點(diǎn),點(diǎn)F為BE的中點(diǎn),連接GF、GH.
(1)猜想GF與GH的數(shù)量關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△ADE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若AD=2,AC=4,將圖①中的△ADE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)一周,直接寫出GH的最大值和最小值,并寫出取得最值時(shí)旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是BC的中點(diǎn),連接DE,過點(diǎn)A作AG⊥ED交DE于點(diǎn)F,交CD于點(diǎn)G.
(1)證明:△ADG≌△DCE;(2)連接BF,證明:AB=FB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC的直角邊長為,點(diǎn)O為斜邊AB的中點(diǎn),點(diǎn)P為AB上任意一點(diǎn),連接PC,以PC為直角邊作等腰Rt△PCD,連接BD.
(1)求證: ;
(2)請你判斷AC與BD有什么位置關(guān)系?并說明理由.
(3)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),設(shè)AP=x,△PBD的面積為S,求S與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com