【題目】概念學習:規(guī)定:求若干個相同有理數(shù)(均不為0)的除法運算叫做除方,如,等,類比有理數(shù)的乘方,我們把記作,讀作“2的圈3次方,記作,讀作的圈4次方,一般地,把記作讀作“a的圈n次方

初步探究:

1)直接寫出計算結果________________;

2)關于除方,下列說法不正確的是________

A.任何非零數(shù)的圈2次方都等于1

B.對于任何正整數(shù)n,

C.

D.負數(shù)的圈奇次方結果是負數(shù),負數(shù)的圈偶次方結果是正數(shù)

深入思考:

我們知道有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?

1)試一試:將下列運算結果直接寫成冪的形式:______;____________

2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式為________

3)算一算:

【答案】初步探究:(1;;(2C.深入思考:(1;;;(2;(3

【解析】

初步探究:

1)根據除方的定義計算即可得;

2)根據除方的定義、有理數(shù)的除法法則逐項判斷即可得.

深入思考:

1)先根據除方的定義寫出每個式子,再將除法轉化為乘法,然后根據冪的逆運算即可得;

2)根據題(1)的運算過程可歸納出規(guī)律,從而可得出答案;

3)先將除方運算轉化為乘方運算,再計算有理數(shù)的乘方運算,然后計算有理數(shù)的加減法即可得.

初步探究:

1

故答案為:;

2A,此項正確

B、,此項正確

C、,此項不正確

D、負數(shù)的圈奇次方是指奇數(shù)個相同負數(shù)的除法,其結果是負數(shù);負數(shù)的圈偶次方是指偶數(shù)個相同負數(shù)的除法,其結果是正數(shù),此項正確

故選:C

深入思考:

1

故答案為:;;

2)由(1)可知,

故答案為:;

3)原式

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形,點是線段延長線上一點,聯(lián)結,其中.若將繞著點逆時針旋轉使得第一次重合時,點落在點(圖中未畫出).求:在此過程中,

1旋轉的角度等于 ______________

2)線段掃過的平面部分的面積為__________(結果保留)

3)聯(lián)結,則的面積為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點C在線段AB上,線段AC=10厘米,BC=6厘米,點M,N分別是AC,BC的中點.

(1)求線段MN的長度;

(2)根據第(1)題的計算過程和結果,設AC+BC=a,其他條件不變,求MN的長度;

(3)動點P、Q分別從A、B同時出發(fā),點P2cm/s的速度沿AB向右運動,終點為B,點Q1cm/s的速度沿AB向左運動,終點為A,當一個點到達終點,另一個點也隨之停止運動,求運動多少秒時,C、P、Q三點有一點恰好是以另兩點為端點的線段的中點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的點,點E在AB上,且PA=PE.

(1)求證:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究CPEABC之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

1ABC繞點A逆時針旋轉θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

2ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.

求證:BDCF;

當AB=2,AD=3時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)字-1,-2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.

(1)小紅摸出標有數(shù)字3的小球的概率是________;

(2)請用列表或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結果;

(3)若規(guī)定:點P(x,y)在第一象限或第三象限小紅獲勝,點P(x,y)在第二象限或第四象限小穎獲勝,請分別求出兩人獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點C是弧 AB上的一個動點(不與點A、B重合)OD⊥BC,OE⊥AC,垂足分別為點D,E;在點C的運動過程中,下列說法正確的是(

A. 扇形AOB的面積為 B. 弧BC的長為 C. ∠DOE=45° D. 線段DE的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BD是矩形ABCD的對角線.

(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).

(2)連結BE,DF,問四邊形BEDF是什么四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,AC8,BC6CDAB于點D.點P從點A出發(fā),以每秒1個單位長度的速度沿線段AB向終點B運動.在運動過程中,以點P為頂點作長為2,寬為1的矩形PQMN,其中PQ2,PN1,點Q在點P的左側,MNPQ的下方,且PQ總保持與AC垂直.設P的運動時間為t(秒)(t0),矩形PQMNACD的重疊部分圖形面積為S(平方單位).

1)求線段CD的長;

2)當矩形PQMN與線段CD有公共點時,求t的取值范圍;

3)當點P在線段AD上運動時,求St的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案