【題目】某物流公司承接A、B兩種貨物運(yùn)輸業(yè)務(wù),已知3月份A貨物運(yùn)費(fèi)單價(jià)為50元/噸,B貨物運(yùn)費(fèi)單價(jià)為30元/噸,共收取運(yùn)費(fèi)9500元;4月份由于工人工資上漲,運(yùn)費(fèi)單價(jià)上漲情況為:A貨物運(yùn)費(fèi)單價(jià)增加了40%,B貨物運(yùn)費(fèi)單價(jià)上漲到40元/噸;該物流公司4月承接的A種貨物和B種貨物的數(shù)量與3月份相同,4月份共收取運(yùn)費(fèi)13000元.試求該物流公司3月份運(yùn)輸A、B兩種貨物各多少噸?
【答案】物流公司3月運(yùn)輸A種貨物100噸,B種貨物150噸.
【解析】首先設(shè)A種貨物運(yùn)輸了x噸,設(shè)B種貨物運(yùn)輸了y噸,根據(jù)題意可得等量關(guān)系:3月份A貨物的運(yùn)費(fèi)+B貨物運(yùn)費(fèi)=9500元;4月份A貨物+B貨物運(yùn)費(fèi)=13000元,根據(jù)等量關(guān)系列出方程組,再解即可.
解:(1)設(shè)A種貨物運(yùn)輸了x噸,設(shè)B種貨物運(yùn)輸了y噸.
依題意,得,,
解得.
答:物流公司月運(yùn)輸A種貨物100噸,B種貨物150噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四川雅安發(fā)生地震后,某校學(xué)生會(huì)向全校1900名學(xué)生發(fā)起了“心系雅安”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列是問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值是 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是直線上一定點(diǎn),點(diǎn)A是x軸上一動(dòng)點(diǎn)不與原點(diǎn)重合,連接PA,過點(diǎn)P作,交y軸于點(diǎn)B,探究線段PA與PB的數(shù)量關(guān)系.
1如圖,當(dāng)軸時(shí),觀察圖形發(fā)現(xiàn)線段PA與PB的數(shù)量關(guān)系是______;
2當(dāng)PA與x軸不垂直時(shí),在圖中畫出圖形,線段PA與PB的數(shù)量關(guān)系是否與Ⅰ所得結(jié)果相同?寫出你的猜想并加以證明;
3 為何值時(shí),線段?此時(shí)的度數(shù)是多少,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x-2)2+c(a>0),當(dāng)自變量x分別取 、3、0時(shí),對(duì)應(yīng)的函數(shù)值分別:y1 , y2 , y3 , 則y1 , y2 , y3的大小關(guān)系正確的是( 。
A.y3<y2<y1
B.y1<y2<y3
C.y2<y1<y3
D.y3<y1<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, , ,點(diǎn)在的延長線上, 是的中點(diǎn), 是射線上一動(dòng)點(diǎn),且,連接,作, 交延長線于點(diǎn).
()如圖,當(dāng)點(diǎn)在上時(shí),填空: __________ (填“”、“”或“”).
()如圖,當(dāng)點(diǎn)在的延長線上時(shí),請(qǐng)根據(jù)題意將圖形補(bǔ)全,判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F.
求證:∠1=∠2.請(qǐng)你完成下面證明過程.
證明:因?yàn)椤?/span>A=104°-∠2,∠ABC=76°+∠2,( )
所以 ∠A+∠ABC=104°-∠2+76°+∠2, ( 等式性質(zhì) )
即 ∠A+∠ABC=180°
所以 AD∥BC,( )
所以 ∠1=∠DBC,( )
因?yàn)?/span> BD⊥DC,EF⊥DC,( )
所以 ∠BDC=90°,∠EFC=90°,( )
所以 ∠BDC=∠EFC,
所以 BD∥ ,( )
所以 ∠2=∠DBC,( )
所以 ∠1=∠2 ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)實(shí)際問題的函數(shù)圖象的形狀與y= 的形狀相同,且頂點(diǎn)坐標(biāo)是(4,-2),那么它的函數(shù)解析式為( ).
A.y=
B.y= 或y=
C.y=
D.y= 或y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(x-a)(x-b)(其中a>b)的圖象如下面圖所示,則函數(shù)y=ax+b的圖象可能正確的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球運(yùn)動(dòng)員去年共參加40場比賽,其中3分球的命中率為0.25,平均每場有12次3分球未投中.
(1)該運(yùn)動(dòng)員去年的比賽中共投出多少個(gè)3分球?共投中多少個(gè)3分球?
(2)在其中的一場比賽中,該運(yùn)動(dòng)員3分球共出手20次,小亮說,該運(yùn)動(dòng)員這場比賽中一定投中了5個(gè)3分球,你認(rèn)為小亮的說法正確嗎?請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com