(2009•兗州市模擬)已知拋物線y=x2+bx+c,經過點A(0,5)和點B(3,2)
(1)求拋物線的解析式:
(2)現有一半徑為l,圓心P在拋物線上運動的動圓,問⊙P在運動過程中,是否存在⊙P與坐標軸相切的情況?若存在,請求出圓心P的坐標;若不存在,請說明理由;
(3)若⊙Q的半徑為r,點Q在拋物線上,且⊙Q與兩坐軸都相切時,求半徑r的值.
【答案】
分析:(1)利用待定系數法把已知坐標代入拋物線解析式即可
(2)設點P坐標為(x
,y
),當⊙P在運動過程中,存在⊙P與坐標軸相切的情況(⊙P與y軸相切;⊙P與x軸相切時)
(3)設點Q坐標為(x,y),則當⊙Q與兩條坐標軸都相切時,有y=±x代入拋物線解析式求出x的值即可.
解答:解:(1)由題意,得;
解得
(3分)
拋物線的解析式為y=x
2-4x+5(1分)
(2)當⊙P在運動過程中,存在⊙P與坐標軸相切的情況.
設點P坐標為(x
,y
),則
當⊙P與y軸相切時,有|x
|=1,x
=±1
由x
=-1,得y
=1-4×(-1)+5=10,
∴P
1(-1,10),(1分)
由x
=1,得y
=1
2-4×1+5=2,
∴P
2(1,2)(1分)
當⊙P與x軸相切時有|y
|=1
∵拋物線開口向上,且頂點在x軸的上方.
∴y
=1
由y
=1,得x
2-4x
+5=1,
解得x
=2,
則P
3的坐標是(2,1)
綜上所述,符合要求的圓心P有三個,其坐標分別為:
P
1(-1,10),P
2(1,2),P
3(2,1)(2分)
(3)設點Q坐標為(x,y),則當⊙Q與兩條坐標軸都相切時,有y=±x
由y=x得x
2-4x+5=x,即x
2-5x+5=0,
解得x=
(2分)
由y=-x,得x
2-4x+5=-x.
即x
2-3x+5=0,此方程無解(1分)
∴⊙O的半徑為r=
.(1分)
點評:本題綜合考查的是直線與圓的知識以及二次函數的相關知識點,難度較大.