【題目】某校在一次大課間活動中,采用了三種活動形式:A跑步,B跳繩,C做操,該校學生都選擇了一種形式參與活動.

1)小杰對同學們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,列出了兩幅不完整的統(tǒng)計圖,利用圖中所提供的信息解決以下問題:

①小杰共調(diào)查統(tǒng)計了   人;②請將圖1補充完整;③圖2C所占的圓心角的度數(shù)是   ;

2)假設被調(diào)查的甲、乙兩名同學對這三項活動的選擇是等可能的,請你用列表格或畫樹狀圖的方法求一下兩人中至少有一個選擇A的概率.

【答案】1)①160;②見解析;③45°;(2

【解析】

1)①用參與B項目的人數(shù)除以它所占的百分比得到調(diào)查的總人數(shù);

②用總人數(shù)乘以參加A項目的人數(shù)的百分比得到參與A項目的人數(shù),然后補全條形統(tǒng)計圖;

③用360度乘參與C項目的百分比得到以圖2C所占的圓心角的度數(shù);

2)畫樹狀圖展示9種等可能的結果數(shù),找出兩人中至少有一個選擇“A”的結果數(shù),然后根據(jù)概率公式求解.

1)①40÷25%160,所以小杰共調(diào)查統(tǒng)計了160人;

②參加A項目的人數(shù)為160×62.5%100(人),

1補充完整為:

③圖2C所占的圓心角的度數(shù);

故答案為160;45°;

2)畫樹狀圖為:

共有9種等可能的結果數(shù),其中兩人中至少有一個選擇A的結果數(shù)為5

所以兩人中至少有一個選擇A的概率=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a4,b5,則該矩形的面積為( 。

A.50B.40C.30D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在建筑物AB上,掛著35 m長的宣傳條幅AE,從另一建筑物CD的頂部D處看條幅頂端A處,仰角為45°,看條幅底端E處,俯角為37°.求兩建筑物間的距離BC

(參考數(shù)據(jù):sin37°0.6,cos37°0.8, tan37°0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】團結村在今年退耕還林活動中,計劃植樹160畝,全村在完成植樹40畝后,某環(huán)保組織加入村民植樹活動,并且該環(huán)保組織植樹的速度是全村植樹速度的1.5倍,整個植樹過程共用了11天完成.

1)全村每天植樹多少畝?

2)如果全村植樹每天需2000元工錢,環(huán)保組織是義務植樹,因此實際工錢比計劃節(jié)約多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,G是BC中點,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延長線上一點。

(1)求證:△ABF≌△DAE

(2)尺規(guī)作圖:作∠DCM的平分線,交GN于點H(保留作圖痕跡,不寫作法和證明),試證明GH=AG。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點B1y軸上,頂點C1,E1,E2,C2,E3,E4C3…在x軸上.已知正方形A1B1C1D1的邊長為1,∠B1C1O60°,B1C1B2C2B3C3,則正方形A2019B2019C2019D2019的邊長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB6AD8,點E是邊AD上一點,EMBCAB于點M,點N在射線MB上,且AEAMAN的比例中項.

1)如圖1,求證:∠ANE=∠DCE

2)如圖2,當點N在線段MB之間,聯(lián)結AC,且ACNE互相垂直,求MN的長;

3)連接AC,如果AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點P,過A作直線ACPC交⊙O于另一點D,連接PA、PB

(1)求證:AP平分∠CAB;

(2)P是直徑AB上方半圓弧上一動點,⊙O的半徑為2,則

①當弦AP的長是_____時,以A,O,P,C為頂點的四邊形是正方形;

②當的長度是______時,以A,D,OP為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結果精確到1cm)

(2)根據(jù)經(jīng)驗,當車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

同步練習冊答案