【題目】九年級(jí)(3)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20


(1)求出w與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請(qǐng)直接寫出結(jié)果.

【答案】
(1)解:當(dāng)1≤x≤50時(shí),設(shè)商品的售價(jià)y與時(shí)間x的函數(shù)關(guān)系式為y=kx+b(k、b為常數(shù)且k≠0),

∵y=kx+b經(jīng)過點(diǎn)(0,40)、(50,90),

,解得:

∴售價(jià)y與時(shí)間x的函數(shù)關(guān)系式為y=x+40;

當(dāng)50≤x≤90時(shí),y=90.

∴售價(jià)y與時(shí)間x的函數(shù)關(guān)系式為y=

由數(shù)據(jù)可知每天的銷售量p與時(shí)間x成一次函數(shù)關(guān)系,

設(shè)每天的銷售量p與時(shí)間x的函數(shù)關(guān)系式為p=mx+n(m、n為常數(shù),且m≠0),

∵p=mx+n過點(diǎn)(60,80)、(30,140),

,解得: ,

∴p=﹣2x+200(0≤x≤90,且x為整數(shù)),

當(dāng)1≤x≤50時(shí),w=(y﹣30)p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;

當(dāng)50≤x≤90時(shí),w=(90﹣30)(﹣2x+200)=﹣120x+12000.

綜上所示,每天的銷售利潤w與時(shí)間x的函數(shù)關(guān)系式是w=


(2)解:當(dāng)1≤x≤50時(shí),w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,

∵a=﹣2<0且1≤x≤50,

∴當(dāng)x=45時(shí),w取最大值,最大值為6050元.

當(dāng)50≤x≤90時(shí),w=﹣120x+12000,

∵k=﹣120<0,w隨x增大而減小,

∴當(dāng)x=50時(shí),w取最大值,最大值為6000元.

∵6050>6000,

∴當(dāng)x=45時(shí),w最大,最大值為6050元.

即銷售第45天時(shí),當(dāng)天獲得的銷售利潤最大,最大利潤是6050元


(3)解:當(dāng)1≤x≤50時(shí),令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,

解得:30≤x≤50,

50﹣30+1=21(天);

當(dāng)50≤x≤90時(shí),令w=﹣120x+12000≥5600,即﹣120x+6400≥0,

解得:50≤x≤53 ,

∵x為整數(shù),

∴50≤x≤53,

53﹣50+1=4(天).

綜上可知:21+4﹣1=24(天),

故該商品在銷售過程中,共有24天每天的銷售利潤不低于5600元


【解析】(1)當(dāng)1≤x≤50時(shí),設(shè)商品的售價(jià)y與時(shí)間x的函數(shù)關(guān)系式為y=kx+b,由點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出此時(shí)y關(guān)于x的函數(shù)關(guān)系式,根據(jù)圖形可得出當(dāng)50≤x≤90時(shí),y=90.再結(jié)合給定表格,設(shè)每天的銷售量p與時(shí)間x的函數(shù)關(guān)系式為p=mx+n,套入數(shù)據(jù)利用待定系數(shù)法即可求出p關(guān)于x的函數(shù)關(guān)系式,根據(jù)銷售利潤=單件利潤×銷售數(shù)量即可得出w關(guān)于x的函數(shù)關(guān)系式;(2)根據(jù)w關(guān)于x的函數(shù)關(guān)系式,分段考慮其最值問題.當(dāng)1≤x≤50時(shí),結(jié)合二次函數(shù)的性質(zhì)即可求出在此范圍內(nèi)w的最大值;當(dāng)50≤x≤90時(shí),根據(jù)一次函數(shù)的性質(zhì)即可求出在此范圍內(nèi)w的最大值,兩個(gè)最大值作比較即可得出結(jié)論;(3)令w≥5600,可得出關(guān)于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范圍,由此即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜邊AB上的一點(diǎn)O為圓心所作的半圓分別與AC、BC相切于點(diǎn)D,E,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足為P.
(1)請(qǐng)作出Rt△ABC的外接圓⊙O;(保留作圖痕跡,不寫作法)
(2)點(diǎn)D在⊙O上嗎?說明理由;
(3)試說明:AC平分∠BAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點(diǎn)D,過點(diǎn)D作DE∥BC交AC的延長線于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,那么S3= , 則Sn= . (用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項(xiàng)式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個(gè)數(shù)有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某超市從底樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,求二樓的層高BC(精確到0.1米).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EFBC于點(diǎn)D , 交AB于點(diǎn)E , 且BEBF , 添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是( 。.

A.BCAC
B.CFBF
C.BDDF
D.ACBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( )

A.AC=BD
B.∠CAB=∠DBA
C.∠C=∠D
D.BC=AD

查看答案和解析>>

同步練習(xí)冊(cè)答案