【題目】以直線AB上一點O為端點作射線 OC,使∠BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點O逆時針方向轉動到某個位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點O逆時針轉動到某個位置時,若恰好∠COD= ∠AOE,求∠BOD的度數?
【答案】(1)30;(2)答案見解析;(3)65°或52.5°.
【解析】試題分析:(1)根據圖形得出∠COE=∠BOE-∠COB,代入求出即可;
(2)根據角平分線定義求出∠COE=∠AOE=∠COA,再根據∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,從而問題得證;
(3)設∠COD=x°,則∠AOE=5x°,根據題意則可得6x=30或5x+90﹣x=120,解方程即可得.
試題解析:(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=∠BOE-∠COB=30°,
故答案為:30;
(2)∵OE平分∠AOC,
∴∠COE=∠AOE=∠COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射線是∠BOC的平分線;
(3)設∠COD=x°,則∠AOE=5x°,
∵∠DOE=90°,∠BOC=60°,
∴6x=30或5x+90﹣x=120,
∴x=5或7.5,
即∠COD=65°或37.5°,
∴∠BOD=65°或52.5°.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O是坐標原點,直線與x軸,y軸分別交于B,C兩點,拋物線經過B,C兩點,與x軸的另一個交點為點A,動點P從點A出發(fā)沿AB以每秒3個單位長度的速度向點B運動,運動時間為t(0<t<5)秒.
(1)求拋物線的解析式及點A的坐標;
(2)在點P從點A出發(fā)的同時,動點Q從點B出發(fā)沿BC以每秒3個單位長度的速度向點C運動,動點N從點C出發(fā)沿CA以每秒個單位長度的速度向點A運動,運動時間和點P相同.
①記△BPQ的面積為S,當t為何值時,S最大,最大值是多少?
②是否存在△NCQ為直角三角形的情形?若存在,求出相應的t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列圖形按一定規(guī)律排列,觀察并回答:
(1)依照此規(guī)律,第四個圖形共有★ 個,第六個圖形共有★ 個;
(2)第n個圖形中有★ 個;
(3)根據(2)中的結論,第幾個圖形中有2017個★?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C、D在同一直線上,且AB:BC:CD=2:3:5
(1)若AD=24cm,求AB、BC、CD的長;
(2)若點M、N是AC、CD中點,且AD=a,求MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,二次函數y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0),點C(0,5),另拋物線經過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求出對稱軸和頂點坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com