【題目】某學(xué)生為測量一棵大樹AH及其樹葉部分AB的高度,將測角儀放在F處測得大樹頂端A的仰角為30°,放在G處測得大樹頂端A的仰角為60°,樹葉部分下端B的仰角為45°,已知點(diǎn)FG與大樹底部H共線,點(diǎn)F、G相距15米,測角儀高度為1.5.求該樹的高度AH和樹葉部分的高度AB

【答案】AH的高度是()米,AB的高度是米.

【解析】

設(shè)CDx,可得AC,因?yàn)?/span>RtACE,所以EC3x,然后求出x的值,可以得到AC,AH的值,最后根據(jù)RtBCD,得出AB的值.

解:由題意可知∠AEC30°,∠ADC60°,∠BDC45°,FG15.

設(shè)CDx米,則在RtACD中,由 AC.

RtACE中,由EC3x.

3x15x.

x7.5.

AC.AH.

∵在RtBCD中,∠BDC45°,∴BCDC7.5.ABACBC

答:AH的高度是()米,AB的高度是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,將對(duì)角線AC繞對(duì)角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)EF,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DPAE,連接PEPF,設(shè)AEx0x3).

1)填空:PC   ,FC  ;(用含x的代數(shù)式表示)

2)求△PEF面積的最小值;

3)在運(yùn)動(dòng)過程中,PEPF是否成立?若成立,求出x的值;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AC的表達(dá)式為yx8,點(diǎn)P從點(diǎn)A開始沿AO向點(diǎn)O1個(gè)單位/s的速度移動(dòng),點(diǎn)Q從點(diǎn)O開始沿OC向點(diǎn)C2個(gè)單位/s的速度移動(dòng).如果P,Q兩點(diǎn)分別從點(diǎn)A,O同時(shí)出發(fā),經(jīng)過幾秒能使PQO的面積為8個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明坐于堤邊垂釣,如圖,河堤的坡角為長為米,釣竿的傾斜角是,其長為米,若與釣魚線的夾角為,求浮漂與河堤下端之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①,②是曉東同學(xué)在進(jìn)行居民樓高度、樓間距對(duì)住戶采光影響問題的研究時(shí)畫的兩個(gè)示意圖.請(qǐng)你閱讀相關(guān)文字,解答下面的問題.

1)圖①是太陽光線與地面所成角度的示意圖.冬至日正午時(shí)刻,太陽光線直射在南回歸線(南緯23.5B地上.在地處北緯36.5A地,太陽光線與地面水平線l所成的角為,試借助圖①,求的度數(shù).

2)圖②是乙樓高度、樓間距對(duì)甲樓采光影響的示意圖.甲樓地處A地,其二層住戶的南面窗戶下沿距地面3.4.現(xiàn)要在甲樓正南面建一幢高度為22.3米的乙樓,為不影響甲樓二層住戶(一層為車庫)的采光,兩樓之間的距離至少應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時(shí),若n≤xn+,則[x]n.如:[2.9]3[2.4]2;……根據(jù)以上材料,解決下列問題:

1)填空[1.8]   ,[]   ;

2)若[2x+1]4,則x的取值范圍是   ;

3)求滿足[x]x1的所有非負(fù)實(shí)數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_______°;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到了解基本了解程度的總?cè)藬?shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Bx軸上,四邊形OACB為平行四邊形,且

AOB=60°,反比例函數(shù)k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)FBC的中點(diǎn),且SAOF=12 時(shí),OA的長為____.

查看答案和解析>>

同步練習(xí)冊(cè)答案