【題目】如圖,在直角坐標系中,已知點A(﹣3,0)、B04),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4、,△16的直角頂點的坐標為( 。

A. 60,0 B. 720 C. 67 D. 79,

【答案】A

【解析】

根據(jù)題目提供的信息,可知旋轉(zhuǎn)三次為一個循環(huán),圖中第三次和第四次的直角頂點的坐標相同,由①→③時直角頂點的坐標可以求出來,從而可以解答本題.

由題意可得,

OAB旋轉(zhuǎn)三次和原來的相對位置一樣,點A(﹣30)、B04),

OA3,OB4,∠BOA90°,

AB=5,

∴旋轉(zhuǎn)到第三次時的直角頂點的坐標為:(120),

16÷351

∴旋轉(zhuǎn)第15次的直角頂點的坐標為:(60,0),

又∵旋轉(zhuǎn)第16次直角頂點的坐標與第15次一樣,

∴旋轉(zhuǎn)第16次的直角頂點的坐標是(60,0),

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( cm2

A72 B90 C108 D144

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(,稱為黃金比例),如圖,著名的“斷臂維納斯”便是如此,此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是,若某人的身材滿足上述兩個黃金比例,且頭頂至咽喉的長度為,則其升高可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點D,與直角邊AC相交于EF兩點,連結(jié)DE,已知∠B=30°,O的半徑為12,弧DE的長度為

1)求證:DEBC;

2)若AF=CE,求線段BC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DBC邊上一點,EAD的中點,過點ABC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:△AEF≌△DEC;

2)若ABAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,在△ABC中,AB=AC,DBC上一點,∠B=30°,連接AD.

(1)若∠BAD=45°,求證:△ACD為等腰三角形;

(2)若△ACD為直角三角形,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數(shù)是甲工程隊單獨完成修路任務所需天數(shù)的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD中,AC⊥BD于點O,AO=CO=8,BO=DO=6,點P為線段AC上的一個動點。

⑴ 填空:AD=CD=_____ .

⑵ 過點P分別作PM⊥AD于M點,作PH⊥DC于H點.連結(jié)PB,在點P運動過程中,PM+PH+PB的最小值為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B.

1)求A、B兩點的坐標.

2)求△AOB的面積.

3)若點C在直線AB上,且SBOC=2,求點C的坐標.

查看答案和解析>>

同步練習冊答案