【題目】如圖,在平面內(nèi),兩條直線L1,L2相交于點O,對于平面內(nèi)任意一點M,p,q分別是點M到直線L1,L2的距離,則稱(p,q)為點M距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)(2,1)的點共有_____

【答案】4

【解析】

l1的距離是2的點,在與l1平行且與l1的距離是2的兩條直線上;同理,點M在與l2的距離是1的點,在與l2平行,且到l2的距離是1的兩直線上,四條直線的距離有四個交點.因而滿足條件的點有四個.

l1的距離是2的點,在與l1平行且與l1的距離是2的兩條直線上;

l2的距離是1的點,在與l2平行且與l2的距離是1的兩條直線上;

以上四條直線有四個交點,故“距離坐標(biāo)”是(2,1)的點共有4個。

故答案為:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一些相同的小立方塊搭一個幾何體,使它從正面看和從上面看的形狀圖如圖所示,從上面看的形狀圖中小正方形中的字母表示在位置的小立方塊的個數(shù),解答下列問題.

1各表示幾?

2)當(dāng)時,畫出這個幾何體從左面看到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(-12-20+-8-15
2-3;
3-30×();
4)(-62×(-22

519+-1.5)÷(-32
62

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的322日為聯(lián)合國確定的世界水日,某社區(qū)為了宣傳節(jié)約用水,從本社區(qū)1000戶家庭中隨機(jī)抽取部分家庭,調(diào)查他們每月的用水量,并將調(diào)查的結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:

(1)此次抽樣調(diào)查的樣本容量是   

(2)補全頻數(shù)分布直方圖,求扇形圖中“6噸﹣﹣9部分的圓心角的度數(shù);

(3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實行加價收費,那么該社會用戶中約有多少戶家庭能夠全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠ACB90°,AC4cm,BC3cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE8cm,DB2cm.

(1)求三角形ABC向右平移的距離AD的長;

(2)求四邊形AEFC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=kx+4的圖象經(jīng)過點(1,2)

(1)k的值;

(2)在所給直角坐標(biāo)系中畫出此函數(shù)的圖象;

(3)根據(jù)圖象回答:當(dāng)x ,y>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一根繩子對折以后用線段表示,現(xiàn)從處將繩子剪斷,剪斷后的各段繩子中最長的一段為,若,則這條繩子的原長為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一塊四邊形的草地ABCD,其中∠B90°,AB20m,BC15mCD7m,DA24m,求這塊草地的面積.

查看答案和解析>>

同步練習(xí)冊答案