【題目】如圖,正方形ABFG和正方形CDEF中,使點(diǎn)B、C的坐標(biāo)分別為(00)和(4,0).

1)在圖中建立平面直角坐標(biāo)系;

2)寫(xiě)出A點(diǎn)的坐標(biāo);

3)畫(huà)出正方形EFCD左平移2個(gè)單位,上平移1個(gè)單位后的正方形EFCD′.

【答案】1)平面直角坐標(biāo)系如圖所示,見(jiàn)解析;(2A(﹣2,3);(3)如圖所示,正方形EFCD即為所求.見(jiàn)解析.

【解析】

1)根據(jù)點(diǎn)B、C的坐標(biāo)分別為(0,0)和(4,0),即可得到直角坐標(biāo)系;
2)根據(jù)A點(diǎn)的位置,即可得到其坐標(biāo);
3)根據(jù)正方形EFCD左平移2個(gè)單位,上平移1個(gè)單位,即可得到正方形E′F′C′D′

解:(1)平面直角坐標(biāo)系如圖所示,

2)由圖可得,A(﹣2,3);

3)如圖所示,正方形EFCD即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雞兔同籠問(wèn)題是我國(guó)古代著名趣題之一,大約在 1500 年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問(wèn)題.書(shū)中是這樣敘述的:今有雉兔同籠,上有三十五頭,下有九十四足,問(wèn)雉兔各幾何?這四句話的意思是:有若干只雞、兔同在一個(gè)籠子里,從上上面數(shù),有 35 個(gè)頭;從下面數(shù),有 94 只腳 .求籠中各有幾只雞和兔?經(jīng)計(jì)算可得( )

A. 20 只,兔 15 B. 12 只,兔 23

C. 15 只,兔 20 D. 23 只,兔 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,ABC各頂點(diǎn)的坐標(biāo)分別為:A4,0),B﹣14),C﹣31

1)在圖中作A′B′C′使A′B′C′ABC關(guān)于x軸對(duì)稱;

2)寫(xiě)出點(diǎn)A′B′C′的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yxb與拋物線yx2xc相交于點(diǎn)A(6,8)與點(diǎn)BP是線段AB的中點(diǎn),D是拋物線上的一個(gè)動(dòng)點(diǎn),直線DPx軸于點(diǎn)C

(1)分別求出這兩個(gè)函數(shù)的關(guān)系式,并寫(xiě)出點(diǎn)BP的坐標(biāo).

(2)四邊形ACBD能否成為平行四邊形?若能,請(qǐng)求出線段OC的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)D的坐標(biāo)為(4,2)時(shí),APD是什么特殊三角形?請(qǐng)說(shuō)明理由,并寫(xiě)出所有符合這一特殊性的點(diǎn)D的坐標(biāo).

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】早晨,小明步行到離家900米的學(xué)校去上學(xué),到學(xué)校時(shí)發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學(xué)校.已知小明步行從學(xué)校到家所用的時(shí)間比他騎自行車從家到學(xué)校所用的時(shí)間多10分鐘,小明騎自行車速度是步行速度的3倍.

(1)求小明步行速度(單位:米/分)是多少;

(2)下午放學(xué)后,小明騎自行車回到家,然后步行去圖書(shū)館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書(shū)館的時(shí)間不超過(guò)騎自行車從學(xué)校到家時(shí)間的2倍,那么小明家與圖書(shū)館之間的路程最多是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,CFAB,垂足為F,MBC的中點(diǎn),EAC上一點(diǎn),且MEMF.若∠A50°,則∠FME的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線:,記為,它與x軸交于點(diǎn)O,;將繞點(diǎn)旋轉(zhuǎn),交x軸于點(diǎn);將繞點(diǎn)旋轉(zhuǎn),交x軸于點(diǎn);如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)在此“波浪線”上,則m的值為  

A. 4 B. C. D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問(wèn)題:

(1)參與本次問(wèn)卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;

(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該市約有12萬(wàn)人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知兩條射線OM∥CN,動(dòng)線段AB的兩個(gè)端點(diǎn)A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線段CB上,OB平分∠AOF,OE平分∠COF.

(1)請(qǐng)?jiān)趫D中找出與∠AOC相等的角,并說(shuō)明理由;

(2)若平行移動(dòng)AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;

(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請(qǐng)求出∠OBA度數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案