【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點A(3,0)和點B(4,3).
(1)求二次函數(shù)的表達式;
(2)求二次函數(shù)圖象的頂點坐標和對稱軸.
(3)直接畫出函數(shù)的圖象(不列表).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx的頂點為C(1,),P是拋物線上位于第一象限內(nèi)的一點,直線OP交該拋物線對稱軸于點B,直線CP交x軸于點A.
(1)求該拋物線的表達式;
(2)如果點P的橫坐標為m,試用m的代數(shù)式表示線段BC的長;
(3)如果△ABP的面積等于△ABC的面積,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小明所住高樓AB高為100米,樓旁有一座坡比為3:1的山坡CE,小明想知道山坡的高度,于是小明來到樓頂B俯視坡底C,測得俯角為45°,仰視坡項E,測得仰角為27°,請根據(jù)小明提供的信息,幫小明求出斜坡CE的高度ED的值.(結(jié)果均精確到0.1米.參考數(shù)據(jù):sin27°≈0.45,cos37°≈0.89,tan27°≈0.51)( 。
A.151.1米B.168.7米C.171.6米D.181.9米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=kx-1(k>0)的圖象與一次函數(shù)圖象y=﹣x+4交于a、b兩點,點a的縱坐標為3.
(1)求反比例函數(shù)的解析;
(2)y軸上是否存在一點P,使2∠APB=∠AOB?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為25 cm,設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=.
(1)求點M離地面AC的高度BM;
(2)設(shè)人站立點C與點A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=8cm,點P從A點出發(fā)沿AB邊向B以1cm/s的速度移動,點Q從B點出發(fā)沿BC向C點以2cm/s的速度移動,當其中一個點到達終點時兩個點同時停止運動,在兩個點運動過程中,請回答:
(1)經(jīng)過多少時間,△PBQ的面積是5cm2?
(2)請你利用配方法,求出經(jīng)過多少時間,四邊形APQC面積最。坎⑶蟪鲞@個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量山坡上一棵樹PQ的高度,小明在點A處利用測角儀測得樹頂P的仰角為450 ,然后他沿著正對樹PQ的方向前進10m到達B點處,此時測得樹頂P和樹底Q的仰角分別是600和300,設(shè)PQ垂直于AB,且垂足為C.
(1)求∠BPQ的度數(shù);
(2)求樹PQ的高度(結(jié)果精確到0.1m, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊿中,以為直徑的⊙與邊交于點,點為⊙上一點,連接并延長交于點 ,連接 .
(1)若 ;求證:是⊙的切線;
(2)若 .求⊙的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】港珠澳大橋,從2009年開工建造,于2018年10月24日正式通車.其全長55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.73,tan20°≈0.36,結(jié)果精確到0.1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com