已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC以1cm/s的速度移動,設(shè)運動的時間為t秒.
(1)求BC邊的長;
(2)當(dāng)△ABP為直角三角形時,求t的值;
(3)當(dāng)△ABP為等腰三角形時,求t的值
分析:(1)直接根據(jù)勾股定理求出BC的長度;
(2)當(dāng)△ABP為直角三角形時,分兩種情況:①當(dāng)∠APB為直角時,②當(dāng)∠BAP為直角時,分別求出此時的t值即可;
(3)當(dāng)△ABP為等腰三角形時,分三種情況:①當(dāng)AB=BP時;②當(dāng)AB=AP時;③當(dāng)BP=AP時,分別求出BP的長度,繼而可求得t值.
解答:解:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,
∴BC=4(cm);

(2)由題意知BP=tcm,
①當(dāng)∠APB為直角時,點P與點C重合,BP=BC=4cm,即t=4;
②當(dāng)∠BAP為直角時,BP=tcm,CP=(t-4)cm,AC=3cm,
在Rt△ACP中,
AP2=32+(t-4)2
在Rt△BAP中,AB2+AP2=BP2,
即:52+[32+(t-4)2]=t2,
解得:t=
25
4
,
故當(dāng)△ABP為直角三角形時,t=4或t=
25
4


(3)①當(dāng)AB=BP時,t=5;
②當(dāng)AB=AP時,BP=2BC=8cm,t=8;
③當(dāng)BP=AP時,AP=BP=tcm,CP=|t-4|cm,AC=3cm,
在Rt△ACP中,AP2=AC2+CP2,
所以t2=32+(t-4)2,
解得:t=
25
8
,
綜上所述:當(dāng)△ABP為等腰三角形時,t=5或t=8或t=
25
8
點評:本題考查了勾股定理以及等腰三角形的知識,解答本題的關(guān)鍵是掌握勾股定理的應(yīng)用,以及分情況討論,注意不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(4)設(shè)四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習(xí)冊答案