【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系 ;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,∠BAD與∠C有何數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E,F在DM上,連接BE,BF,CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度數(shù).
【答案】(1)∠A+∠C=90°;(2)∠C+∠BAD=90°,理由見解析;(3)99°.
【解析】
(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;
(2)先過(guò)點(diǎn)B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;
(3)先過(guò)點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°,進(jìn)而得出∠EBC=∠ABE+∠ABC=9°+90°=99°.
(1)如圖1,AM與BC的交點(diǎn)記作點(diǎn)O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)如圖2,過(guò)點(diǎn)B作BG∥DM,
∵BD⊥AM,
∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C,
∴∠C+∠BAD=90°;
(3)如圖3,過(guò)點(diǎn)B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
設(shè)∠DBE=α,∠ABF=β,則
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,
∴∠AFC=5α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=5α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+5α+(5α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②聯(lián)立方程組,解得α=9°,
∴∠ABE=9°,
∴∠EBC=∠ABE+∠ABC=9°+90°=99°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】龍華區(qū)某學(xué)校開展“四點(diǎn)半課堂”,計(jì)劃開設(shè)以下課外活動(dòng)項(xiàng)目:版畫、機(jī)器人、航模、園藝種植為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查每位學(xué)生必須選且只能選其中一個(gè)項(xiàng)目,并將調(diào)查結(jié)果繪制成了如圖1、2的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息回答下列問(wèn)題:
這次被調(diào)查的學(xué)生共有______人;圖1中,選“版畫“所在扇形的圓心角度數(shù)為______;
請(qǐng)將圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;
若該校學(xué)生總?cè)藬?shù)為1500人,由于”機(jī)器人“項(xiàng)目因故取消,原選“機(jī)器人”中的學(xué)生轉(zhuǎn)選了“航模”項(xiàng)目,則該校學(xué)生中選“航模“項(xiàng)目的總?cè)藬?shù)為______人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.
(1)作出與△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
(2)求出A1,B1,C1三點(diǎn)坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示的是汽車在行駛的過(guò)程中,速度隨時(shí)間變化而變化的情況.
(1)汽車從出發(fā)到最后停止共經(jīng)過(guò)了多少時(shí)間?它的最高時(shí)速是多少?
(2)汽車在那些時(shí)間段保持勻速行駛?時(shí)速分別是多少?
(3)出發(fā)后8分到10分之間可能發(fā)生了什么情況?
(4)用自己的語(yǔ)言大致描述這輛汽車的行駛情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人在一環(huán)形場(chǎng)地上從A點(diǎn)同時(shí)同向勻速跑步,甲的速度是乙的倍,4分鐘兩人首次相遇,此時(shí)乙還需要跑300米才跑完第一圈,求甲、乙二人的速度及環(huán)形場(chǎng)地的周長(zhǎng)列方程組求解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與二次函數(shù)的圖象交于點(diǎn)B、點(diǎn)C,二次函數(shù)圖象的頂點(diǎn)為A,當(dāng)是等腰直角三角形時(shí),則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于P,Q兩點(diǎn)給出如下定義:若點(diǎn)P到x,y軸的距離中的最大值等于點(diǎn)Q到x,y軸的距離中的最大值,則稱P,Q兩點(diǎn)為“等距點(diǎn)”圖中的P,Q兩點(diǎn)即為“等距點(diǎn)”.
(1)已知點(diǎn)A的坐標(biāo)為.①在點(diǎn)中,為點(diǎn)A的“等距點(diǎn)”的是________;②若點(diǎn)B的坐標(biāo)為,且A,B兩點(diǎn)為“等距點(diǎn)”,則點(diǎn)B的坐標(biāo)為________.
(2)若兩點(diǎn)為“等距點(diǎn)”,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在等邊△ABC的邊BC上,BE=6,射線CD⊥BC于點(diǎn)C,點(diǎn)P是射線CD上一動(dòng)點(diǎn),點(diǎn)F是線段AB上一動(dòng)點(diǎn),當(dāng)EP+PF的值最小時(shí),BF=7,則AC為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OP=1,過(guò)P作PP1⊥OP,得OP1=;再過(guò)P1作P1P2⊥OP1且P1P2=1,得OP2=;又過(guò)P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依次法繼續(xù)作下去,S1,S2,S3…分別表示各個(gè)三角形的面積,那么S12+S22+S32+…+S92的值是( )
A.B.C.D.55
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com