【題目】為了解某次“小學(xué)生書法比賽”的成績情況,隨機(jī)抽取了 30 名學(xué)生的成績進(jìn)行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績 x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:
(1)圖中 a 的值為 ;
(2)若繪制該樣本的扇形統(tǒng)計圖,則成績 x 在“80≤x<90”所對應(yīng)扇形的圓心角度數(shù) 為 度;
(3)此次比賽共有 1500 名學(xué)生參加,若將“x≥80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀”的學(xué)生大約有多少人?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點,該拋物線的頂點為C.
(1)求此拋物線和直線的解析式;
(2)設(shè)直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過M作x軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標(biāo);若不存在,請說明理由;
(3)設(shè)點P是直線下方拋物線上的一動點,當(dāng)面積最大時,求點P的坐標(biāo),并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點和點為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點,:②做直線,且恰好經(jīng)過點,與交于點,連接,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=﹣1和x=3時,y值相等.直線y=與拋物線有兩個交點,其中一個交點的橫坐標(biāo)是6,另一個交點是這條拋物線的頂點M.
(1)求這條拋物線的表達(dá)式.
(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運(yùn)動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運(yùn)動,當(dāng)一個點到達(dá)終點時,另一個點立即停止運(yùn)動,設(shè)運(yùn)動時間為t秒.
①求t的取值范圍.
②若使△BPQ為直角三角形,請求出符合條件的t值;
③t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:一個大于1的正整數(shù),若被除余1,被除余1,被除余1……,被3除余1,被2除余1,那么稱這個正整數(shù)為“明禮”數(shù)(取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73為“明四禮”數(shù).
材料二:設(shè),……,3,2的最小公倍數(shù)為,那么“明禮”數(shù)可以表示為(為正整數(shù)),例如:6,5,4,3,2的最小公倍數(shù)為60,那么“明六禮”數(shù)可以表示為(為正整數(shù))
(1)求出最小的三位“明三禮”數(shù);
(2)一個“明四禮”數(shù)與“明五禮”數(shù)的和為170,求出這兩個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點為邊上的一個動點(點不與點、點重合).以為頂點作,射線交邊于點,過點作交射線于點.
(1)求證:;
(2)當(dāng)平分時,求的長;
(3)當(dāng)是等腰三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年全國青少年禁毒知識競賽開始以來,某市青少年學(xué)生踴躍參加,掀起了學(xué)習(xí)禁毒知識的熱潮,禁毒知識競賽的成績分為四個等級:優(yōu)秀,良好,及格,不及格.為了了解該市廣大學(xué)生參加禁毒知識競賽的成績,抽取了部分學(xué)生的成績,根據(jù)抽查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖:
(1)本次抽查的人數(shù)是 ;扇形統(tǒng)計圖中不及格學(xué)生所占的圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若某校有2000名學(xué)生,請你根據(jù)調(diào)查結(jié)果估計該校學(xué)生知識競賽成績?yōu)椤皟?yōu)秀”和“良好”兩個等級共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com