【題目】材料:對于平面直角坐標(biāo)系中的任意兩點,,我們把叫做,兩點間的距離公式,記作,如:,,則,兩點的距離為
請根據(jù)以上的閱讀材料,解答下列問題:
(1)當(dāng),的距離,求出的值.
(2)若在平面內(nèi)有一點,使有最小值,求出它最小值和此時的范圍.
(3)若有最小值,請直接寫出最小值.
【答案】(1)a=3或-5;(2)-4≤x0≤2;(3)2+4.
【解析】
(1)根據(jù)兩點間距離公式構(gòu)建方程即可解決問題.
(2)求的最小值,相當(dāng)于求點(x0,y0)到點(-4,4)和點(2,4)的距離和的最小值.
(3)由,當(dāng)2x=3y時,這個式子有最小值,最小值為2,因為=,求出的最小值即可解決問題.
(1)由題意:(a+1)2+(1-4)2=52,
解答a=3或-5.
(2)求的最小值,相當(dāng)于求點(x0,y0)到點(-4,4)和點(2,4)的距離和的最小值,觀察圖象可知最小值=6,此時-4≤x0≤2.
(3)∵,
∴
∵相當(dāng)于求點(2x,2)到點(3y,0)的距離的最小值,
∴當(dāng)2x=3y時,這個式子有最小值,最小值為2,
求=相當(dāng)于求點(2x,2)到點(0,-1),和點(3y,0)到點(4,-3)的距離和的最小值,這個最小值= ,
∴原式的最小值=2+=2+4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點D是等邊△ABC內(nèi)一點,DA=13,DB=19,DC=21,將△ABD繞點A逆時針旋轉(zhuǎn)到△ACE的位置,求△DEC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點,第2次運動到點,第3次運動到點,.….按照這樣的運動規(guī)律,點第17次運動到點( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)的圖象和性質(zhì).靜靜根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象進行了探究,下面是靜靜的探究過程,請補充完成:
(1)化簡函數(shù)解析式,當(dāng)時, ,當(dāng)時, .
(2)根據(jù)(1)的結(jié)果,完成下表,并補全函數(shù)圖象.
(3)觀察函數(shù)圖象,請寫出該函數(shù)的一條性質(zhì): ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形的各邊中點所得的四邊形是菱形,則該四邊形一定是( )
A. 矩形 B. 一組對邊相等,另一組對邊平行的四邊形
C. 對角線互相垂直的四邊形 D. 對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如右圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2017個正方形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-3,1),B(-1,3),C(0,1).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A1B1C;
(2)平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(-5,-3),畫出平移后的△A2B2C2;
(3)若△A2B2C2和△A1B1C關(guān)于點P中心對稱,請直接寫出旋轉(zhuǎn)中心P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com