【題目】背景資料:

在已知ABC所在平面上求一點(diǎn)P,使它到三角形的三個(gè)頂點(diǎn)的距離之和最小.

這個(gè)問題是法國(guó)數(shù)學(xué)家費(fèi)馬1640年前后向意大利物理學(xué)家托里拆利提出的,所求的點(diǎn)被人們稱為“費(fèi)馬點(diǎn)”.

如圖,當(dāng)ABC三個(gè)內(nèi)角均小于120°時(shí),費(fèi)馬點(diǎn)PABC內(nèi)部,此時(shí)APB=∠BPC=∠CPA=120°,此時(shí),PAPBPC的值最。

解決問題:

(1)如圖②,等邊ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、BC的距離分別為3,4,5,求APB的度數(shù).

為了解決本題,我們可以將ABP繞頂點(diǎn)A旋轉(zhuǎn)到ACP′處,此時(shí)ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA,PBPC轉(zhuǎn)化到一個(gè)三角形中,從而求出APB=   ;

基本運(yùn)用:

(2)請(qǐng)你利用第(1)題的解答思想方法,解答下面問題

如圖③,△ABC中,CAB=90°,AB=ACE,FBC上的點(diǎn),且EAF=45°,判斷BEEF,FC之間的數(shù)量關(guān)系并證明;

能力提升:

(3)如圖,在Rt△ABC中,C=90°,AC=1,∠ABC=30°,點(diǎn)PRt△ABC的費(fèi)馬點(diǎn),

連接APBP,CP,求PA+PB+PC的值.

【答案】(1)150°;

(2)E′F2=CE′2+FC2,理由見解析;

(3)

【解析】試題分析:(1)

(2)首先把△ACE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ACE′.連接E′F,由旋轉(zhuǎn)的性質(zhì)得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,然后再證明△EAF≌△E′AF可得E′F=EF,,再利用勾股定理可得結(jié)論

(3)AOB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°至A′O′B處,連接OO′,根據(jù)已知證明C、O、A′、O′四點(diǎn)共線,在RtA′BC中,利用勾股定理求得A′C的長(zhǎng),根據(jù)新定義即可得OA+OB+OC =

試題解析:(1)∵△ABC為等邊三角形,

∴AB=AC,∠BAC=60°,

∴將△ABP繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACP′,如圖,連結(jié)PP′,

∴AP=AP′=3,∠PAP′=60°,P′C=PB=4,∠APB=∠AP′C,

∴△APP′為等邊三角形,

∴∠PP′A=60°,PP′=AP=3,

在△PP′C中,∵PP′=3,P′C=4,PC=5,

∴PP′2+P′C2=PC2

∴△PP′C為直角三角形,∠PP′C=90°,

∴∠AP′C=∠PP′A+∠PP′C=60°+90°=150°,

∴∠APB=150°,

故答案為:150°;

(2)E′F2=CE′2+FC2,理由如下

如圖2,把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACE′,

由旋轉(zhuǎn)的性質(zhì)得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,

∵∠EAF=45°,

∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,

∴∠EAF=∠E′AF,

EAF和E′AF中, ,

∴△EAF≌△E′AF(SAS),

∴E′F=EF,

∵∠CAB=90°,AB=AC,

∴∠B=∠ACB=45°,

∴∠E′CF=45°+45°=90°,

由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2;

(3)如圖3,將AOB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°至A′O′B處,連接OO′,

Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,

BC==,

∵△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,∴△A′O′B如圖所示;

∠A′BC=∠ABC+60°=30°+60°=90°,

∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,

∵△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,得到△A′O′B,

∴A′B=AB=2,BO=BO′,A′O′=AO,

∴△BOO′是等邊三角形

∴BO=OO′,∠BOO′=∠BO′O=60°,

∵∠AOC=∠COB=∠BOA=120°,

∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,

C、O、A′、O′四點(diǎn)共線,

RtA′BC中,A′C===,

OA+OB+OC=A′O′+OO′+OC=A′C=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

14a2ab)﹣(2a+b)(2ab

2)(2x+122x1)(x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】坐火車從上海到婁底,高鐵G1329次列車比快車K575次列車少需要9小時(shí),已知上海到婁底的鐵路長(zhǎng)約1260千米,G1329的平均速度是K5752.5倍.

1)求K575的平均速度;

2)高鐵G1329從上海到婁底只需幾小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)倡導(dǎo)的一帶一路建設(shè)將促進(jìn)我國(guó)與世界各國(guó)的互利合作.根據(jù)規(guī)劃,一帶一路地區(qū)覆蓋總?cè)丝诩s為4400000000人,這個(gè)數(shù)用科學(xué)記數(shù)法表示為 (   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB90°,BOC60°,射線OM平分∠AOC,ON平分∠BOC。

1)求∠MON的度數(shù);

2)如果(1)中,∠AOBα,BOCββ為銳角),其他條件不變,求∠MON的度數(shù);

3)從(1)、(2)的結(jié)果中,你能得到什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的是( 。

A.內(nèi)錯(cuò)角相等

B.平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直

C.相等的角是對(duì)頂角

D.過一點(diǎn)有且只有一條直線與已知直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生會(huì)為了解本年級(jí)600名學(xué)生的睡眠情況,將同學(xué)們某天的睡眠時(shí)長(zhǎng)t(小時(shí))分為A,B,C,D,EA9t24B8t9;C7t8D6t7;E0t6)五個(gè)選項(xiàng),進(jìn)行了一次問卷調(diào)查,隨機(jī)抽取n名同學(xué)的調(diào)查問卷并進(jìn)行了整理,繪制成如下條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:

1)求n的值;

2)根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該年級(jí)600名學(xué)生中睡眠時(shí)長(zhǎng)不足7小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為6的正方形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,直線y=mx+2OC,BC兩邊分別相交于點(diǎn)D,G,以DG為邊作菱形DEFG,頂點(diǎn)EOA邊上.

1)如圖1,頂點(diǎn)F在邊AB上,當(dāng)CG=OD時(shí),

m的值;

菱形DEFG是正方形嗎?如果是請(qǐng)給予證明.

2)如圖2,連接BF,設(shè)CG=a,△FBG的面積為S,求Sa的函數(shù)關(guān)系式;

3)如圖3,連接GE,當(dāng)GD平分∠CGE時(shí),請(qǐng)直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)用來(lái)盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長(zhǎng)為10cm,母線OE(OF)長(zhǎng)為10cm,在母線OF 上的點(diǎn)A 處有一塊爆米花殘?jiān)?/span>FA2cm,一只螞蟻從杯口的點(diǎn)E 處沿圓錐表面爬行到A 點(diǎn),則此螞蟻爬行的最短距離為 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案